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1 Introduction

Simulation estimation is popular in economics and is developed by Lerman and Manski

(1981), McFadden (1989), Laroque and Salanie (1989), (1993), Duffie and Singleton (1993),

Smith (1993), Gourieroux, Monfort, and Renault (1993), Gourieroux and Monfort (1996)

and Gallant and Tauchen (1996) among others. Pakes and Pollard (1989) provided a general

asymptotic approach for generalized method of simulated moment estimators, and verified

the conditions in the general theory when a fixed number of independent simulations are

used for each of the independent observations. In practice, however, researchers sometimes

use the same set of simulation draws for all the observations in the dataset. Recent insightful

papers by Lee and Song (2015) and Freyberger (2015) developed asymptotic results for a

class of simulated maximum likelihood-like estimators and simulated method of moment

estimators.

Independent simulation draws are doubly indexed, i.e., ωir, so that there are n × R

simulations in total, where n is the number of observations and R is the number of simulations

for each observation. Overlapping simulation draws are singly indexed, i.e., ωr, so that

there are R simulations in total. The same R simulations are used for each observation.

The properties of simulation based estimators using overlapping and independent simulation

draws are studied by Lee (1992) and Lee (1995) under the conditions that the simulated

moment conditions are smooth and continuously differentiable functions of the parameters.

This is, however, a strong assumption that is likely to be violated by many simulation

estimators used in practice. We extend the above results to nonsmooth moment functions

using empirical process and U process theories developed in a sequence of papers by Pollard

(1984), Nolan and Pollard (1987, 1988) and Neumeyer (2004). In particular, the main insight

relies on verifying the high level conditions in Pakes and Pollard (1989), Chen, Linton, and

Van Keilegom (2003) and Ichimura and Lee (2010) by combining the results in Neumeyer

(2004) with results from the empirical process literature (e.g. Andrews (1994)).

Even for the simulated method of moment estimator, the classical results in Pakes and

Pollard (1989) and McFadden (1989) are for independent simulation draws. However, their

results only apply to a finite number of independent simulations for each observation, since
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the proof depends crucially on the fact that a finite sum of functions with limited complexity

also has limited complexity. It is a challenging question with unclear answer how their anal-

ysis can be extended to a larger number of simulation draws. With overlapping simulation

draws, this difficulty is resolved by appealing to empirical U-process theory.

A main application of maximum simulated likelihood estimators is multinomial probit

discrete choice models and its various panel data versions (Newey and McFadden (1994)).

Whether or not using overlapping simulations improves computational efficiency depends on

the specific model. Generating the random numbers is cheap in terms of computational time

easy but computing the moment conditions or the likelihood function is typically costly. To

equate the order of computational effort, we will adopt the notation of letting R denote

either the total number of overlapping simulations or the number of independent simulations

for each observation. For a given R, Lee (1995), pointed out that the leading terms of the

asymptotic expansion are smaller with independent draws than with overlapping draws. This

suggests that independent draws are more desirable and leads to smaller confidence intervals

whenever it is feasible.

There are still two reasons to consider overlapping draws, especially for simulated maxi-

mum likelihood estimators, based on theoretical and computational feasibility. Despite the

theoretical advantage of the method of simulated moments, the method of simulated max-

imum likelihood is still appealing in empirical research, partly because it minimizes a well

defined distance between the model and the data even when the model is misspecified. The

asymptotic theory with independent draws in this case is difficult and to our knowledge

has not been fully worked out in the literature. In particular, Pakes and Pollard (1989)

only provided an analysis for simulated GMM, but did not provide an analysis for simulated

MLE, which can be in fact far more involved.1 Only the very recent insightful paper by Lee

and Song (2015) studies an unbiased approximation to the simulated maximum likelihood,

which still differs from most empirical implementation of simulated maximum likelihood

methods using nonsmooth crude frequency simulators. Smoothing typically requires the

1While Pakes and Pollard (1989) refers to the method of simulated scores in likelihood based models,
obtaining unbiased simulators for the score function is not immediate and may require independent simula-
tions of the implied instrument functions, as highlighted in Train (2003). We are not aware of a previous
definition for setting up the score function with nonsmooth likelihood simulators either.
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choice of kernel and bandwidth parameters and introduces biases. For example, the Stern

(1992) decomposition simulator, while smooth and unbiased, requires repeated calculations

of eigenvalues and is computationally prohibitive. Kristensen and Salanié (2013) discuss bias

reduction techniques for simulation estimators in smooth models.

When computing the simulated likelihood function is very difficult, overlapping simu-

lations can be used to trade off computational feasibility with statistical accuracy. Using

independent draws requires that R increases faster than
√
n, where n is the sample size in

order that the estimator has an asymptotic normal distribution. With overlapping draws,

the estimator will be asymptotically normal as long as R increases to infinity. A caveat, of

course, is that when R is much smaller than n, the asymptotic distribution would mostly

represent the simulation noise rather than the the sampling error, which reflects the cost in

statistical accuracy as a result of more feasible computation.

In summary, previous work for method of simulated moments (MSM) or maximum simu-

lated likelihood (MSL) may be classified according to whether: (a) the simulation draws are

independent or overlapping; (b) the number of simulation draws per observation is R fixed

or grows with the sample size; (c) the simulator is smooth in the parameter. This paper

considers (a) overlapping simulation draws; (b) R → ∞; (c) the simulator is nonsmooth,

a combination which has not been addressed in the literature. Note that for both overlap-

ping and independent draws, the same simulations are generally used for evaluating different

parameter values θ.

2 Simulated Moments and Simulated Likelihood

We begin by formally defining the method of simulated moments and maximum simulated

likelihood using overlapping simulation draws. These methods are defined in Lee (1992) and

Lee (1995) in the context of multinomial discrete choice models. We use a more general

notation to allow for both continuous and discrete dependent variables. Let zi = (yi, xi)

be i.i.d. random variables in the observed sample for i = 1, . . . , n, where the yi are the

dependent variables and the xi are the covariates or regressors. Let ωr, r = 1, . . . , R be a

set of simulation draws. We will use P to denote the distribution of zi, and Q to denote

the distribution of ωr while Pn and QR are the empirical distributions of zi, i = 1, . . . , n and

4



ωr, r = 1, . . . , R, respectively. We are concerned about estimating an unknown parameter

θ ∈ Θ ⊂ Rk. The method of moment results are developed both for completeness and for

expositional transition to the simulated maximum likelihood section.

The method of moments estimator is based on a set of moment conditions g(zi, θ) ∈ Rd

such that g(θ) ≡ Pg (·, θ) is zero if and only if θ = θ0 where θ0 is construed as the true

parameter value. The number of moment condition d is at least as large as the number of

parameters k. In the above Pg(·, θ) =
∫
g (zi, θ) dP (zi) denotes expectation with respect

to the true distribution of zi. In models where the moment g(zi, θ) can not be analytically

evaluated, it can often be approximated using simulations. Given the simulation draws

ωr, r = 1, . . . , R, let q(zi, ωr, θ) be a function such that it is an unbiased estimator of g(zi, θ)

for all zi:

Qq(z, ·, θ) ≡
∫
q(z, ·, θ) dQ(ω) = g(z, θ).

Then the unknown moment condition g(z, θ) can be estimated by

ĝ(z, θ) = QRq(z, ωr, θ) ≡
1

R

R∑
r=1

q(z, ωr, θ),

which in turn is used to form an estimate of the population moment condition g(θ):

ĝ(θ) = Pnĝ(·, θ) ≡ 1

n

n∑
i=1

ĝ(zi, θ) =
1

nR

n∑
i=1

R∑
r=1

q(zi, ωr, θ).

In the above, both z1, . . . , zn and ω1, . . . , ωR are iid and they are independent of each other.

The method of simulated moments (MSM) estimator with overlapping simulated draws is

defined with the usual quadratic norm as in Pakes and Pollard (1989)

θ̂ =
θ∈Θ

argmin ‖ĝ(θ)‖2
Wn

where ‖x‖2
W = x′Wx,

where both Wn and W are d dimensional weighting matrixes such that Wn
p−→ W .

In the maximum simulated likelihood method, we reinterpret g(zi; θ) as the likelihood

function of θ at the observation zi, and ĝ(zi; θ) as the simulated likelihood function which is

an unbiased estimator of g(zi; θ). The MSL estimator is usually defined as, for i.i.d data,

θ̂ =
θ∈Θ

argmax Pn log ĝ(·; θ) =
1

n

n∑
i=1

log ĝ(zi; θ).
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While g(zi; θ) is typically a smooth function of zi and θ, ĝ(zi; θ) oftentimes is not. The

likelihood function g (z; θ) can be either the density for continuous data, or the probability

mass function for discrete data. It can also be either the joint likelihood of the data, or the

conditional likelihood g (z; θ) = g (y|x; θ) when z = (y, x).

In the following we will develop conditions under which both MSM and MSL are consis-

tent as both n → ∞ and R → ∞. Under the conditions given below, they both converge

at the rate of
√
m, where m = min(n,R) to a limiting normal distribution. These results

are developed separately for MSM and MSL. For MSL, the condition that R/
√
n → ∞

is required for asymptotic normality with independent simulation draws, e.g. Laroque and

Salanie (1989) and Train (2003). With overlapping draws, asymptotic normality holds as

long as both R and n converge to infinity. If R/n → 0, then the convergence rate becomes
√
R instead of

√
n. A simulation estimator with overlapping simulations can also be viewed

as a profiled two step estimator to invoke the high level conditions in Chen, Linton, and

Van Keilegom (2003). The derivations in the remaining sections are tantamount to verify-

ing these high level conditions. For maximum likelihood with independent simulations, the

bias reduction condition
√
R/n → ∞ is derived in Laroque and Salanie (1989), (1993) and

Gourieroux and Monfort (1996). For nonsmooth maximum likelihood like estimators, Lee

and Song (2015) require the number of simulations to satisfy
√
R logR/n→∞.

To summarize, the following assumption is maintained through the paper.

ASSUMPTION 1 Let zi = (yi, xi), i = 1, . . . , n and ωr, r = 1, . . . , R be two independent

sequences of i.i.d random variables with distributions P and Q respectively. The function

q(zi, ωr, θ) satisfies Qq(z, ·, θ) ≡
∫
q(z, ω, θ) dQ(ω) = g(z, θ) for all z and all θ ∈ Θ.

3 Asymptotics of MSM with Overlapping Simulations

The MSM objective function takes the form of a two-sample U-process studied extensively

in Neumeyer (2004):

ĝ(θ) ≡ 1

nR
SnR(θ) where SnR(θ) ≡

n∑
i=1

R∑
r=1

q(zi, ωr, θ), (1)
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with kernel function q(zi, wr, θ) and its associated projections

g(zi, θ) = Qq(zi, ·, θ) and h(wr, θ) ≡ Pq(·, wr, θ).

The following assumption restricts the complexity of the kernel function and its projections

viewed as classes indexed by the parameter θ. Recall that a class of functions is called

Euclidean if their graphs form a polynomial class of sets.

ASSUMPTION 2 For each j = 1, . . . , d, the following three classes of functions

Fj = {qj(zi, wr, θ), θ ∈ Θ},

QFj = {gj(zi, θ), θ ∈ Θ},

PFj = {hj(wr, θ), θ ∈ Θ},

are Euclidean. Their envelope functions, denoted respectively by Fj, QFj and PFj, have at

least two moments.

By Definition (2.7) in Pakes and Pollard (1989) (hereafter P&P), a class of functions F

is called Euclidean for the envelope F if there exist positive constants A and V that do not

depend on measures µ, such that if µ is a measure for which
∫
Fdµ < ∞, then for each

ε > 0, there are functions f1, . . . , fk in F such that (i) k ≤ Aε−V ; (ii) For each f in F , there

is an fi with
∫
|f − fi|dµ ≤ ε

∫
Fdµ.

This assumption is satisfied by many known functions. A counter example is given

on page 2252 of Andrews (1994). In the case of binary choice models, it is satisfied given

common low level conditions on the random utility functions. For example, when the random

utility function is linear with an addititive error term, q(zi, wr, θ) typically takes a form that

resembles 1 (z′iθ + wr ≥ 0), which is Euclidean by Lemma 18 in Pollard (1984). As another

example, in random coefficient binary choice models, the conditional choice probability is

typically the integral of a distribution function of a single index Λ (x′iβ) over the distribution

of the random coefficient β. Suppose β follows a normal distribution with mean v′iθ1 and a

variance matrix with Cholesky factor θ2, then the choice probability is given by, for φ (·;µ,Σ)

normal density function with mean µ and variance matrix Σ,
∫

Λ (x′iβ)φ (β; v′iθ1, θ
′
2θ2) dβ. In
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this model, for draws ωr from the standard normal density, and for zi = (xi, vi), q(zi, wr, θ)

takes a form that resembles

Λ (x′i (viθ1 + θ′2ωr)) = Λ

(
x′iviθ1 +

K∑
k=1

xikθ
′
2kωr

)
.

As long as Λ (·) is a monotone function, this function is Euclidean according to Lemma 2.6.18

in Van der Vaart and Wellner (1996).

Under assumption 2, the following lemma is analogous to Theorems 2.5, 2.7 and 2.9 of

Neumeyer (2004). In the vector case, the notation of || · || (e.g. ||S̃nR(θ)||) denotes Euclidean

norms.

LEMMA 1 Under Assumptions 1 and 2 the following statements hold:

a. Define, for g = (P ⊗Q) q

q̃(z, ω, θ) = q(z, ω, θ)− g(z, θ)− h(w, θ) + g(θ),

then

sup
θ∈Θ
||S̃nR(θ)|| = Op(

√
nR),

where

S̃nR(θ) ≡
n∑
i=1

R∑
r=1

q̃(zi, ωr, θ).

b. Define, for m = n ∧R,

UnR(θ) ≡
√
m

(
1

nR
SnR(θ)− g(θ)

)
,

then

sup
d(θ1,θ2)=o(1)

||UnR(θ1)− UnR(θ2)|| = op(1).

where d (θ1, θ2) denotes the Euclidean distance
√

(θ1 − θ2)′ (θ1 − θ2).

c. Further,

sup
θ∈Θ

∣∣∣∣∣∣∣∣ 1

nR
SnR(θ)− g(θ)

∣∣∣∣∣∣∣∣ = op(1).
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Lemma 1 will be applied in combination with Lemma 3 in the appendix, which restates

a version of Theorem 7.2 of Newey and McFadden (1994) and Theorem 3.3 of Pakes and

Pollard (1989) in a form that is suitable for our purpose.

Consistency, under the conditions stated in Lemma 1, is an immediate consequence of

part (c) of Lemma 1 and Corollary 3.2 of Pakes and Pollard (1989). Asymptotic normality

is an immediate consequence of Lemma 3.

THEOREM 1 Given Assumptions 1 and 2, θ̂
p−→ θ0 under the following conditions: (a)

g(θ) = 0 if and only if θ = θ0; (b) Wn
p−→ W for W positive definitive; (c) g(θ) is continuously

differentiable at θ0 with a full rank derivative matrix G; and (d)∥∥∥ĝ(θ̂)
∥∥∥
Wn

= ‖ĝ(θ0)‖Wn
+ op(1).

Furthermore, if
∥∥∥ĝ(θ̂)

∥∥∥
Wn

= ‖ĝ(θ0)‖Wn
+ op(m

−1/2), and if R/n→ κ ∈ [0,∞] as n→∞,

R→∞, then under Assumptions 1 and 2,

√
m(θ̂ − θ0)

d−→ N(0, (G′WG)−1G′WΣWG(G′WG)−1). �

with Σ = (1 ∧ κ)Σg + (1 ∧ 1/κ)Σh, where Σg = Var(g(zi, θ0)) and Σh = Var(h(ωr, θ0)). �.

The asymptotic distribution for independent draws simulators with a finite number of

simulations R takes the form of

√
nĝ (θ0)

d−→ N
(
0,
(
1 + 1

R
Σg

))
This typically dominates using overlapping draws even when the number of overlapping sim-

ulations diverges to infinity. In particular, note that R has to go to infinity with overlapping

draws. In contrast, with independent draws, a finite R only incurs an efficiency loss of the

order of 1/R. Recall that with independent draws, R is used to denote the number of simu-

lations per observation: the total number of simulations is n×R and still increases to infinity

when n increases without bound.

3.1 MSM Variance Estimation

Each component of the asymptotic variance can be estimated using sample analogs. A

consistent estimate Ĝ of G, with individual elements Gj, can be formed by numerical differ-

entiation, for ej being a dθ × 1 vector with 1 in the jth position and 0 otherwise, and δm a
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step size parameter

Ĝj ≡ Ĝj

(
θ̂, δm

)
=

1

2δm

[
ĝ(θ̂ + ejδm)− ĝ(θ̂ − ejδm)

]
.

A sufficient, although likely not necessary, condition for Ĝ(θ̂)
p−→ G (θ0) is that both δm → 0

and
√
mδm → ∞. Under these conditions, Lemma 1.b implies that Ĝj − Gj(θ̂)

p−→ 0, and

Gj(θ̂)
p−→ Gj(θ0) as both δm → 0 and θ̂

p→ θ0. Σ can be consistently estimated by

Σ̂ = (1 ∧R/n) Σ̂g + (1 ∧ n/R) Σ̂h,

where

Σ̂g =
1

n

n∑
i=1

ĝ(zi, θ̂) ĝ
′(zi, θ̂) and Σ̂h =

1

R

R∑
r=1

ĥ(ωr, θ̂) ĥ
′(ωr, θ̂).

In the above

ĥ(ω, θ) =
1

n

n∑
i=1

q (zi, ω, θ) .

Resampling methods, such as bootstrap and subsampling, or MCMC, can also be used for

inference.

4 Asymptotics of MSL with overlapping simulations

In this section we derive the asymptotic properties of maximum simulated likelihood estima-

tors with overlapping simulations, which requires a different approach due to the nonlinearity

of the log function. Recall that MSL is defined as

θ̂ =
θ∈Θ

argmax L̂(θ),

where

L̂(θ) = Pn logQR q(·, ·, θ) =
1

n

n∑
i=1

log
1

R

R∑
r=1

q(zi, ωr, θ) =
1

n

n∑
i=1

log ĝ(zi, θ);

L̂(θ) and θ̂ are implicitly indexed by m = min(n,R).

To begin with, the class of functions q(z, ·, θ) of ω indexed by both θ and z is required

to be a VC-class, as defined in Van der Vaart and Wellner (1996) (pp 134, 141). Frequently

g(z, θ) is a conditional likelihood in the form of g(y |x, θ) where z = (y, x) includes both the

dependent variable and the covariates. The “densities” g(zi; θ) are broadly interpreted to
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include also probability mass functions for discrete choice models or a mixture of probability

density functions and probability mass functions for mixed discrete-continuous models.

ASSUMPTION 3 Both the class of functions indexed by both θ and z: L = { q(z, ·, θ) :

z ∈ Z, θ ∈ Θ} and the class {g (·, θ) , θ ∈ Θ}, have uniformly bounded envelopes.

The following boundedness assumption is restrictive, but is difficult to relax for nons-

mooth simulators using empirical process theory. It is also assumed in Lee (1992, 1995).

ASSUMPTION 4 There is an M <∞ such that supz,θ

∣∣∣ 1
g(z,θ)

∣∣∣ < M .

Let L(θ) = P log g(·; θ). The VC property and boundedness assumption ensures uniform

convergence.

LEMMA 2 Under Assumptions 1, 2, 3, and 4, L̂ (θ)− L̂ (θ0) converges to L (θ)−L (θ0) as

m→∞ uniformly over Θ, which is assumed to be compact. Furthermore, if

1. L̂(θ̂) ≥ L̂(θ0)− op(1)

2. For any δ > 0, sup‖θ−θ0‖≥δ L(θ) < L(θ0)

then θ̂ − θ0
p−→ 0.

Proof Consider the decomposition

L̂(θ)− L(θ)− L̂ (θ0) + L (θ0) = A (θ) +B (θ)

where

A (θ) = (Pn − P )[log g(·, θ)− log g(·, θ0)] (2)

B (θ) = Pn[log ĝ(·, θ)− log ĝ(·, θ0)− log g(·, θ)− log g(·, θ0)].

First, by Theorem 19.13 of van der Vaart (1999), A (θ) converges uniformly to 0 in

probability. By the monotonicity of log transformation and Lemma 2.6.18 (v) and (viii) in

Van der Vaart and Wellner (1996), log ◦QF − log g(·, θ0) is VC-subgraph.
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Second, we show that B (θ) converges uniformly to 0 in probability as R → ∞. By

Taylor’s theorem and Assumption 4,

sup
θ
|B (θ) | ≤ 2 sup

z,θ
| log ĝ(z, θ)− log g(z, θ)|

= 2 sup
z,θ

∣∣∣∣ ĝ(z, θ)− g(z, θ)

g∗(z, θ)

∣∣∣∣ for g∗(z, θ) ∈ [g(z, θ), ĝ(z, θ)]

≤ 2M sup
z,θ
|ĝ(z, θ)− g(z, θ)|

Moreover, by Assumption 3 and Theorem 19.13 of van der Vaart (1999), as R→∞,

sup
z,θ
|ĝ(z, θ)− g(z, θ)| p→ 0.

Therefore, B (θ) converges uniformly to 0 as R → ∞. The first part of the lemma then

follows from the triangle inequality.

Consistency in the second part is a direct consequence of Theorem 2.1 in Newey and Mc-

Fadden (1994) from uniform convergence when the true parameter is uniquely identified. 2

In the remainder 2 of this section, we investigate the asymptotic normality of MSL, which

requires that the limiting population likelihood is at least twice differentiable. First Lemma

4 in the appendix recalls a general result (see for example Sherman (1993) for optimization

estimators and Chernozhukov and Hong (2003) for MCMC estimators, among others).

The following analysis consists of verifying the conditions in the general Lemma 4. The

finite sample likelihood, without simulation, is required to satisfy the stochastic differentia-

bility condition as required in the following high level assumption. It is typically satisfied

when the true non-simulated log likelihood function is pointwise differentiable.

ASSUMPTION 5 The true log likelihood function log g(·, θ) satisfies the conditions in

Lemma 3.2.19, p. 302, of Van der Vaart and Wellner (1996). In particular, the conditions in

Lemma 3.2.19 of Van der Vaart and Wellner (1996) require the existence of ṁ (·) such that

for some δ > 0, {
log g (·, θ)− log g (·, θ0)− ṁ (·)′ (θ − θ0)

||θ − θ0||
: ||θ − θ0|| < δ

}
is P-Donsker, and

P (log g (·, θ)− log g (·, θ0)− ṁ′ (θ − θ0))
2

= o
(
||θ − θ0||2

)
.
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Under Assumption 5, for D0 (·) = ṁ (·)−Em (·), where ED0 (·)2 <∞, such that for any

δm → 0 we have

sup
‖θ−θ0‖≤δm

nRemaindern (θ)

1 + n‖θ − θ0‖2
= op (1) (3)

for

Remaindern (θ) ≡ (Pn − P ) (log g(·, θ)− log g(·, θ0))− D̂′0(θ − θ0),

where

D̂0 =
1

n

n∑
i=1

D0 (zi) .

To account for the simulation error we need an intermediate step which is a modification of

Theorem 1 of Sherman (1993). This intermediate step is given in Lemma 5 in the appendix.

The next assumption requires that the simulated likelihood is not only unbiased, but is

also a proper likelihood function.

ASSUMPTION 6 For all simulation lengths R and all parameters θ, both g (zi; θ) and

QRq (zi, ·; θ) are proper (possibly conditional) density functions.

We also need to regulate the amount of irregularity that can be allowed by the simulation

function q (z, ω, θ). The following assumption allows for q (z, ω, θ) to be an indicator function,

and is related to Theorem 2.37 of Pollard (1984). When q (z, ω, θ) is Lipschitz in θ, a stronger

condition holds where the right hand size of (2) can be replaced by O (δ2
m). In the following,

Q⊗P denotes independent expectations taken with respect to the two arguments in f (·, ·, θ).

ASSUMPTION 7 Define f (z, ω, θ) = q (z, ω, θ) /g (z, θ) − q (z, ω, θ0) /g (z, θ0), then (1)

Q⊗ P
[
sup‖θ−θ0‖=o(1) f (·, ·, θ)2] = o (1), (2) sup‖θ−θ0‖≤δm,z∈Z Varωf (z, ω, θ) = O (δm).

ASSUMPTION 8 Define ψ (ω, θ) =
∫ q(z,ω,θ)

g(z,θ)
f (z) dz, where f (z) is the joint density or

probability mass function of the data. The function ψ (ω, θ) also satisfies the conditions in

Assumption 5: there exists D1 (·) with V ar (D1 (ωr)) <∞, such that for some δ > 0{
ψ (·, θ)− ψ (·, θ0)−D1 (·)′ (θ − θ0)

||θ − θ0||
: ||θ − θ0|| < δ

}
is Q-Donsker, and

Q (ψ (·, θ)− ψ (·, θ0)−D1 (θ − θ0))2 = o
(
||θ − θ0||2

)
.
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Remark 1 Under Assumption 8, for D̂1 = 1
R

∑R
r=1D1 (ωr)−QD1 (ωr),

sup
‖θ−θ0‖=o((logR)−1)

R (QR −Q) (ψ (·, θ)− ψ (·, θ0))−RD̂′1 (θ − θ0)

1 +R‖θ − θ0‖2
= op (1)

Remark 2 When g (z; θ) represents the joint likelihood of the data, f (z) = g (z; θ0).

When g (z; θ) = g (y|x; θ) represents a conditional likelihood, f (z) = g (z; θ0) f (x) where

f (x) is the marginal density or probability mass function of the conditioning variables, in

which case ψ (ω, θ) =
∫ ∫ q(z,ω,θ)

g(z,θ)
g (y|x; θ0) dyf (x) dx, with the understanding that integrals

become summations in the case of discrete data.

Remark 3 Assumption 8 can be further simplified when the true likelihood g (z, θ) is

twice continuously differentiable (with bounded derivatives for simplicity). To verify this

statement, note that in this case

D1 (ωr) = −
∫
q (ωr, z, θ0)

g2 (z; θ0)

∂

∂θ
g (z; θ0) f (z) dz. (4)

Equation (4) applies when g (z; θ) is the joint likelihood of the data. When g (z; θ) is a

conditional likelihood g (z; θ) = g (y|x; θ), D1 (ωr) = −
∫ q(ωr,z,θ0)

g(z;θ0)
∂
∂θ
g (z; θ0) f (x) dz. To see

(4), note that

(QR −Q) (ψ (·, θ)− ψ (·, θ0))

= P

[
1

g (·, θ)
− 1

g (·, θ0)

]
(ĝ (·, θ0)− g (·, θ0))

+ P
1

g (·, θ0)
(ĝ (·, θ)− g (·, θ)− ĝ (·, θ0) + g (·, θ0))

+ P

(
1

g (·, θ)
− 1

g (·, θ0)

)
(ĝ (·, θ)− g (·, θ)− ĝ (·, θ0) + g (·, θ0)) .

The second line is zero because of assumption 6. The third line can be bounded by

M‖θ − θ0‖ sup
‖θ−θ0‖=o((logR)−1),z∈Z

| (QR −Q) (q (·, z, θ)− q (ωr, z, θ0)) ‖ = op

(
1√
R

)
‖θ − θ0‖,

using the same arguments that handle the B22 (θ, z) in the proof. Finally, the first line

becomes

P

[
1

g (·, θ)
− 1

g (·, θ0)

]
(ĝ (·, θ0)− g (·, θ0)) = (QR −Q)D1 (·) (θ − θ0) + Remainder (θ) ,

where ‖Remainder (θ) ‖ ≤ op (‖θ − θ0‖) | supz∈Z (QR −Q) q (·, z, θ0) | = op

(
‖θ−θ0‖√

R

)
.
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THEOREM 2 Under Assumptions 1 2, 3, 4, 5, 6, 7, and 8 and Conditions 1, 2, 3 and 4 of

Theorem 4, the conclusion of Theorem 4 holds with D̂ = PnD0 (·) +QRD1 (·) and

Σ = (1 ∧ κ) Var (D0 (zi)) + (1 ∧ 1/κ) Var (D1 (ωr)) .

Proof Consistency is given in Lemma 2. Consider again the decomposition given by Equa-

tion (2). Because of the linearity structure of Conditions (5) and (6) of Lemma 4, it suffices

to verify them separately for the terms A (θ) and B (θ).

It follows immediately from Assumption 5 that Conditions (5) and (6) of Lemma 4 hold

for the first term A (θ) because n ≥ m, since (3) is increasing in n:

sup
||θ−θ0||≤δm

m
(
A (θ)− D̂′0 (θ − θ0)

)
1 +m||θ − θ0||2

≤ sup
||θ−θ0||≤δm

R̂0 (θ)

1/n+ ||θ − θ0||2
= oP (1) , (5)

for R̂0 (θ) = A (θ)− D̂′0 (θ − θ0). Next we verify these conditions for the B (θ) term.

Decompose B further into B (θ) = B1 (θ) +B2 (θ) +B3 (θ), where

B1 (θ) = Pn

[
1

g (·, θ)
(ĝ (·, θ)− g (·, θ))− 1

g (·, θ)
(ĝ (·, θ0)− g (·, θ0))

]
B2 (θ) = −1

2
Pn

[
1

g (·, θ)2 (ĝ (·, θ)− g (·, θ))2 − 1

g (·, θ0)2 (ĝ (·, θ0)− g (·, θ0))2

]
B3 (θ) =

1

3
Pn

[
1

ḡ (·, θ)3 (ĝ (·, θ)− g (·, θ))3 − 1

ḡ (·, θ0)3 (ĝ (·, θ0)− g (·, θ0))3

]
.

In the above ḡ (z, θ) and ḡ (z, θ0) are mean values, dependent on z, between [g (z, θ) , ĝ (z, θ)]

and [g (z, θ0) , ĝ (z, θ0)] respectively. By Assumption 4,

sup
θ∈Θ
|B3 (θ) | ≤ 2

3
M3| sup

θ∈Θ,z∈Z
(ĝ (z, θ)− g (z, θ)) |3 ≤ Op

(
1

R
√
R

)
,

where the last inequality follows from supθ∈Θ,z∈Z |ĝ (z, θ)− g (z, θ) | = Op

(
1√
R

)
due, e.g., to

Theorem 2.14.1 of Van der Vaart and Wellner (1996). By Theorem 2.14.1 it also holds that

sup
θ∈Θ
|B1 (θ) | = Op

(
1√
R

)
and sup

θ∈Θ
|B2 (θ) | = Op

(
1

R

)
.

This allows us to invoke Theorem 5, with dm =
√
m, to claim that

‖θ̂ − θ0‖ = Op

(
m−1/4

)
.
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Next we bound the second term by, up to a constant, within ‖θ̂ − θ0‖ = op (1/ logR):

sup
‖θ−θ0‖�(logR)−1

|B2 (θ) | = op

(
1

R

)
. (6)

To show (6), first note that

sup
‖θ−θ0‖�(logR)−1

|B2 (θ) | ≤ sup
‖θ−θ0‖�(logR)−1,z∈Z

B21 (θ, z)×B22 (θ, z)

where

B21 (θ, z) =

∣∣∣∣ (QR −Q)

(
q (z, ·, θ)
g (z, θ)

+
q (z, ·, θ0)

g (z, θ0)

) ∣∣∣∣
and

B22 (θ, z) =

∣∣∣∣ (QR −Q)

(
q (z, ·, θ)
g (z, θ)

− q (z, ·, θ0)

g (z, θ0)

) ∣∣∣∣.
It follows again from Theorem 2.14.1 of Van der Vaart and Wellner (1996) that

sup
‖θ−θ0‖�(logR)−1,z∈Z

|B21 (θ, z) | = Op

(
1√
R

)
.

Next we consider B22 (θ, z) in light of arguments similar to Theorem 2.37 in Pollard (1984),

for which it follows that for δm = o
(
(logR)−1), for

f (z, ω, θ) = q (z, ω, θ) /g (z, θ)− q (z, ω, θ0) /g (z, θ0)

where ‖θ − θ0‖ ≤ δm, and for εR = ε/
√
R: Var (QRf (z, ·, θ)) /ε2R → 0 for each ε > 0. There-

fore the symmetrization inequalities (30) in p. 31 of Pollard (1984) apply and subsequently,

for FR = {f (z, ω, θ) , z ∈ Z, ‖θ − θ0‖ ≤ δm},

P

(
sup
f∈FR

∣∣∣∣ (QR −Q) f

∣∣∣∣ > 8
ε√
R

)

≤ 4P

(
sup
f∈FR

|Q0
Rf | > 2

ε√
R

)
≤ 8Aε−WRW/2 exp

(
− 1

128
ε2δ−1

m

)
+ P

(
sup
f∈FR

QRf
2 > 64δm

)
.

The second term goes to zero for the same reason as in Pollard. The first also goes to

zero since logR − 1
δm
→ −∞. Thus we have shown that B22 (θ, z) = op

(
1√
R

)
uniformly in

θ − θ0 ≤ δm and z ∈ Z, and consequently (6) holds. By considering n � R, n � R and

n ≈ R separately, (6) also implies that for some α > 0:

sup
‖θ−θ0‖�m−α

|B2 (θ) | = op

(
1

m

)
.
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It remains to investigate B1 (θ) = 1
n

∑n
i=1

1
R

∑R
r=1 f (zi, ωr, θ), which, using Assumption 6,

can be written

B1 (θ) =
1

nR
SnR

(
f̃ (·, ·, θ)

)
+B0 (θ) ,

where, for SnR defined in (1),

f̃ (z, ω, θ) = f (z, ω, θ)−Qf (z, ·, θ)− Pf (·, ω, θ) + P ⊗Qf (·, ·, θ) ,

B0 (θ) = (QR −Q) (ψ (·, θ)− ψ (ω, θ0)) , and ψ (ω, θ) =
∫ q(z,ω,θ)

g(z,θ)
f (z) dz. Upon noting that

Q q(z,·,θ)
g(z,θ)

= 1 identically, Qf (z, ·, θ) = 0 and P⊗Qf (z, ·, θ) = 0. Consider SnR

(
f̃ (·, ·, θ)

)
as a

U-process indexed by the class F̃n,R = {f̃ (·, ·, θ) , θ ∈ Θ, ||θ−θ0|| ≤ rn,R}, where rn,R = o (1),

with its envelope denoted as Fn,R. It then follows immediately from the proof of Theorem

2.5 (pp. 83) of Neumeyer (2004) that

1

nR
SnR (f (·, ·, θ)) = op

(
1√
nR

)
= op

(
1

m

)
.

Finally, B0 is handled by Assumption 8. So that, since B (θ) = B1 (θ) − B0 (θ) + B2 (θ) +

B3 (θ)+B0 (θ), and each of B1 (θ)−B0 (θ), B2 (θ) and B3 (θ) is oP
(

1
R

)
uniformly in ||θ−θ0|| ≤

δm, for any δm → 0, we have, for R̂1 (θ) = B (θ)− D̂′1 (θ − θ0),

sup
||θ−θ0||≤δm

RR̂1 (θ)

1 +R||θ − θ0||2
= sup
||θ−θ0||≤δm

RB0 (θ)−RD̂′1 (θ − θ0)

1 +R||θ − θ0||2
+ oP (1) = oP (1) .

This together with (5) implies that condition 6 of Theorem 4 is satisfied with D̂ = D̂0 + D̂1,

since we can bound (8) by

(8) = sup
||θ−θ0||≤δm

R̂0 (θ) + R̂1 (θ)

1/m+ ||θ − θ0||2
≤ sup
||θ−θ0||≤δm

R̂0 (θ)

1/n+ ||θ − θ0||2
+ sup
||θ−θ0||≤δm

R̂1 (θ)

1/R + ||θ − θ0||2
.

Finally to verify condition 5 in Theorem 4, write

√
mD̂ =

√(
1 ∧ R

n

)
1√
n

n∑
i=1

D0 (zi) +

√( n
R
∧ 1
) 1√

R

R∑
r=1

D1 (ωr) .

That
√
mD̂

d→ N (0,Σ) follows from 1 ∧ R
n
→ 1 ∧ κ, n

R
∧ 1 → 1

κ
∧ 1, the continuous

mapping Theorem, Slutsky’s Lemma, and CLTs applied to
√
nD̂0 = 1√

n

∑n
i=1 D0 (zi) and

√
RD̂1 = 1√

R

∑R
r=1D1 (ωr). 2
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4.1 MSL Variance Estimation

A consistent estimate of the asymptotic variance can be formed by sample analogs. In

general, each of

Ĥ = Pn
∂2

∂θ∂θ′
logQRq

(
·, ·, θ̂

)
, D̂0 (zi) =

∂

∂θ
log ĝ

(
zi, θ̂

)
and D̂1 (ωr) =

∂

∂θ
Pn
q
(
ωr, ·, θ̂

)
ĝ
(
·, θ̂
)

can not be computed analytically, and has to be replaced by numerical estimates:

Ĥij =
1

4ε2

(
Pn logQRq

(
·, ·, θ̂ + eiε+ ejε

)
− Pn logQRq

(
·, ·, θ̂ − eiε+ ejε

)
−Pn logQRq

(
·, ·, θ̂ + eiε− ejε

)
+ Pn logQRq

(
·, ·, θ̂ − eiε− ejε

))
,

D̂0j (zi) =
1

2h

(
log ĝ

(
zi, θ̂ + ejh

)
− log ĝ

(
zi, θ̂ − ejh

))
,

D̂1j (wr) =
1

2h

Pn q
(
ωr, ·, θ̂ + ejh

)
ĝ
(
·, θ̂ + ejh

) − Pn
q
(
ωr, ·, θ̂ − ejh

)
ĝ
(
·, θ̂ − ejh

)
 .

Let, for κ̂ = R/n,

Σ̂h = PnD̂0 (·) D̂0 (·)′ Σ̂g = QRD̂1 (·) D̂1 (·) Σ̂ = (1 ∧ κ̂) Σ̂h + (1 ∧ 1/κ̂) Σ̂g.

Under the given assumptions, if ε→ 0, h→ 0,
√
nh→∞ and n

1
4 ε→∞, then Ĥ = H+op (1)

and Σ̂h = Σh + op (1), Σ̂g = Σg + op (1). Hence Σ̂ = Σ + op (1) by the continuous mapping

theorem.

5 MCMC

Simulated objective functions that are nonsmooth can be difficult to optimize by numer-

ical methods. An alternative to optimizing the objective function is to run it through a

MCMC routine, as in Chernozhukov and Hong (2003). Under the assumptions given in the

previous sections, the MCMC Laplace estimators can also be shown to be consistent and

asymptotically normal. The Laplace estimator is defined as

θ̃ = argminθ∈Θ

∫
ρ
(√

m (u− θ)
)

exp
(
mL̂ (u)

)
π (u) du.
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In the above ρ (·) is a convex symmetric loss function such that ρ (h) ≤ 1 + |h|p for some

p ≥ 1, and π (·) is a continuous density function with compact support and postive at θ0. In

the above the objective function can be either GMM:

L̂ (θ) =
1

2
PnQRq (·, ·, θ)′WnPnQRq (·, ·, θ) ,

or the log likelihood function L̂ (θ) =
∑n

i=1 log ĝ (zi, θ).

The asymptotic distribution of the posterior distribution and θ̃ follows immediately from

Assumption 2, which leads to Theorem 3, and Chernozhukov and Hong (2003). Define

h =
√
m
(
θ − θ̂

)
, and consider the posterior distribution on the localized parameter space:

pn (h) =
π
(
θ̂ + h√

m

)
exp

(
mL̂

(
θ̂ + h/

√
m
)
−mL̂

(
θ̂
))

Cm

where

Cm =

∫
θ̂+h/

√
m∈Θ

π

(
θ̂ +

h√
m

)
exp

(
mL̂

(
θ̂ + h/

√
m
)
−mL̂

(
θ̂
))

dh.

Desirable properties of the MCMC method include the following, for any α > 0:∫
|h|α|pn (h)− p∞ (h) |dh p−→ 0, where p∞ (h) =

√
| det(J0)|
(2π)dim θ

exp

(
−1

2
h′J0h

)
. (7)

In the above J0 = G′WG for the GMM model and J0 = − ∂2

∂θ∂θ′
L (θ0) for the likelihood

model.

THEOREM 3 Under Assumptions 1 and 2 for the GMM model or Assumptions 1, 2,

and 8, Conditions 1, 2, 4 of Theorem 2 for the MLE model, (7) holds. Consequently,
√
m
(
θ̃ − θ̂

)
p−→ 0, and the variance of pn,R (h) converges to J−1

0 in probability.

Proof For the GMM model, the stated results follow immediately from Assumption 2,

which leads to Theorem 3, and Chernozhukov and Hong (2003) (CH). The MLE case is

also almost identical to CH but requires a small modification. When Condition (6) in

Theorem 4 holds for δm = o (1), the original proof shows (7) over three areas of integration

separately, {|h| ≤
√
mδm} and {|h| ≥ δm

√
m}. When Condition 6 in Theorem 4 only holds

for δm = am = (logm)−d, we need to consider separately, for a fixed δ, {|h| ≤
√
mam},

{
√
mam ≤ |h| ≤

√
mδ} and {|h| ≥ δ

√
m}. The arguments for the first and third regions
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{|h| ≤
√
mam} and {|h| ≥ δ

√
m} are identical to the ones in CH. Hence we only need to

show that (since the prior density is assumed bounded around θ0):∫
√
mam≤|h|≤

√
mδ

π

(
θ̂ +

h√
m

)
exp

(
mL̂

(
θ̂ + h/

√
m
)
−mL̂

(
θ̂
))

dh
p−→ 0.

By arguments that handle the term B in the proof of Theorem 2, in this region,

ω (h) ≡ mL̂
(
θ̂ + h/

√
m
)
−mL̂

(
θ̂
)

= −1

2
(1 + op (1))h′J0h+mOp

(
1√
m

)
.

Hence the left hand side integral can be bounded by, up to a finite constant∫
√
mam≤|h|≤

√
mδ

exp (ω (h)) dh = exp
(
Op

(√
m
)) ∫

√
mam≤|h|

exp

(
−1

2
(1 + op (1))h′J0h

)
dh.

The tail of the normal distribution can be estimated by w.p. → 1:

∫
√
mam≤|h| exp

(
−1

2
(1 + op (1))h′J0h

)
dh

≤
∫
√
mam≤|h| exp

(
−1

4
h′J0h

)
dh ≤ C (

√
mam)

−1
exp (−ma2

m) ,

for am >> m−α for any α > 0, hence for some α > 0.∫
√
mam≤|h|≤

√
mδ

exp (ω (h)) dh ≤ C exp
(
Op

(√
m
)) (

m
1
2
−α
)−1

exp
(
−m1−2α

)
= op (1) .

The rest of the proof is identical to CH. 2

The MCMC method can always be used to obtain consistent and asymptotically nor-

mal parameter estimates. For the GMM model with W being the asymptotic variance of
√
mĝ (θ0), or for the likelihood model where n >> R, the posterior distribution from the

MCMC can also be used to obtain valid asymptotic confidence intervals for θ0.

For the GMM model where W 6= asym Var (
√
mĝ (θ0)), or the likelihood model where

R >> n, R ∼ n, the posterior distribution does not resemble the asymptotic distribution of

θ̂ or θ̃. However, in this case the variance of the posterior distribution can still be used to

estimate the inverse of the Hessian term (G′WG)−1 or H (θ0) in Condition (4) of Theorem 4.

6 Monte Carlo Simulations

In this section, we presented Monte Carlo results for a multinomial probit model. Let there

be M alternatives and N individuals. Suppose alternative m = M is the base alternative.

20



xm is the value of K attributes for each alternative. It includes a constant. εi is the taste

shock for individual i. Relative utility from choosing alternative m = 1, 2, · · · ,M − 1 for

individual i is:

y∗im = (β + Γεi)
′(xm − xM)

Γεi
iid∼ MVNK(0,Ω)

So Γ is the lower triangular Cholesky decomposition of Ω: Ω = ΓΓ′ and εi
iid∼ MVNK(0, I).

If all y∗im < 0 for all m, then individual i chooses the base alternative M . Otherwise the

alternative with the largest positive utility is chosen. Let yim, m = 1, 2, . . . ,M − 1 be 1 if

alternative m is chosen and 0 otherwise. That is,

yim = 1{y∗im ≥ 0, y∗im = max {y∗in}M−1
n=1 }, m = 1, 2, . . . ,M − 1, i = 1, 2, . . . , N

For our Monte Carlo simulation, we set M = 3, k = 2, xm − XM = (1, x̃m) where

x̃m
iid∼ N(0, 1) for m = 1, 2, · · · ,M − 1. β = β0 = [1, 1]′. ω = [1, 0; 0, 0.5]. We create

J = 1000 samples of data from this data generating process. We assume Σ is known and

estimate β.

Define zi = {xim, yim}m. The probability of observing zi conditional on {xim}m is

g(zi, β,Ω) = P[{yim}m|{xim}m, β,Ω]

The probability operator P comes from MVN(0,Ω), which can not be evaluated analytically.

The true parameter β0 maximizes the true likelihood

L(β) = Eε log g(zi, β,Ω)

The maximum likelihood estimator, β̂, maximizes the sample likelihood

LN(β) =
1

N

N∑
i=1

log g(zi, β,Ω)

Let wri = (wri1, wri2, . . . , wri,M−1)′ denote the rth draw of taste shocks from MVN(0,Σ).

We take R draws for each individual. The simulated likelihood for an observation is the

share of draws with the observed choice:

ĝ(zi, β) =
1

R

R∑
r=1

q(wri, zi, β) =
1

R

R∑
r=1

1{y(wri, zi, β) = yi}
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For overlapping draws, we use the same R draws for all i. For independent simulated

maximum likelihood, we use different draws across is. The simulated maximum likelihood

estimator is the β that maximizes the simulated likelihood

L̂NR(β) =
1

N

N∑
i=1

log ĝ(zi, β)

We find the solution to this maximization problem using simulated annealing with a initial

guess of β = [0.5, 0.5]. The same algorithm is used for overlapping draws and independent

draws.

We ran 1000 MC for combinations of2

n ∈ [50, 100, 200, 400, 800], R/n ∈ [0.2, 0.5, 0.8, 1, 2, 5, 10, 20, 50].

For each MC trial, we derived asymptotic distribution to approximate the 95% confidence

interval and check if the true parameter falls inside the computed interval. We calculated

the asymptotic distribution using the numerical integration formula in subsections 4.1. We

need to choose a stepsize for numerical integration. We tried step sizes ε = R−α, α =

{2, 3/2, 1, 1/2, 1/3, 1/4, 1/8, 1/10, 1/15}. In the following we report results for the smallest

stepsize α = −2, which turned out to generate better coverage for both overlapping and

independent draws3.

We compare the accuracy of the confidence interval constructed using overlapping draws

SMLE and the asymptotic distribution derived in our paper with

1. overlapping draws SMLE with asymptotic distribution that does not correct for simu-

lation bias and variance inflation

2. independent draws SMLE with asymptotic distribution that does not correct for sim-

ulation bias and variance inflation

Table 1 reports the empirical coverage of the 95% confidence interval constructed from the

estimate of the asymptotic distribution using numerical derivatives, over 1000 Monte Carlo

2For one subset of the simulations, we also looked at R/n = 100 and found that it is similar to the
R/n = 50 results. Hence we set the largest R/n to 50.

3We found that overlapping draws with adjustment for simulation noise performs better than the other
two methods for all other stepsizes.
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Table 1: Empirical coverage frequency for 95% confidence interval, numerical derivatives

n,κ 0.2 0.5 0.8 1 2 5 10 20 50
50 3 24 49 59 83 93 94 95 95

3 23 49 59 84 92 93 93 95
100 9 53 77 82 91 93 94 95 94

10 55 77 82 88 93 94 94 94
200 34 78 87 90 92 93 95 95 95

34 78 87 88 92 93 94 94 95
400 66 89 91 91 93 95 95 95 95

66 88 90 91 92 93 94 95 94
800 83 91 92 93 93 95 95 95 96

83 91 91 92 92 94 94 94 94

The total number of Monte Carlo repetitions is 1000.

repetitions. The column dimension corresponds to the sample size n and the row dimension

corresponds to the ratio between R and n. The two rows for each sample size correspond

to the coverage for the first and second elements of β, respectively. Better accuracy means

being closer to 95%. The asymptotic distribution accurately represents the finite sample

distribution when m = min (R, n) is not too small.

Table 2 reports the false empirical coverage of the 95% confidence interval when the

simulation noise is ignored in the asymptotic distribution of the estimator. As expected,

when R/n is large, in particular above 10, the improvement from accounting for Σ1 in the

asymptotic distribution is very small. When R/n is very small, the size distortion from

ignoring Σ1 is very sizable. The size distortion is quite visible when R/n is as big as 2, and

still visible even when R/n = 5.

Overlapping draws are applicable in situations in which independent draws are not com-

putationally practicable, or with nonsmooth moment conditions where the theoretical valid-

ity of independent draws is more difficult and beyond the scope of the current paper. In spite

of the lack of a theoretical proof, in tables 3 we report the counterpart with independent

draws. The independent draws method does not perform well relative to overlapping draws

when either N or R/N is small.
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Table 2: False empirical coverage frequency for 95% confidence interval, numerical derivatives

n,κ 0.2 0.5 0.8 1 2 5 10 20 50
50 2 20 42 51 78 90 91 93 94
50 2 18 42 53 79 89 91 92 95
100 7 45 64 71 85 90 91 93 94
100 7 44 64 70 83 90 92 93 93
200 24 65 74 80 87 91 94 94 94
200 23 62 75 77 86 89 93 93 94
400 44 73 80 83 89 93 94 94 95
400 43 69 76 79 85 89 92 94 94
800 58 78 84 86 90 93 94 94 95
800 52 71 78 83 87 91 92 93 94

The total number of Monte Carlo repetitions is 1000.

Table 3: Independent draws empirical coverage frequency for 95% confidence interval, nu-
merical derivatives

n,κ 0.2 0.5 0.8 1 2 5 10 20 50
50 1 8 30 41 77 90 91 93 94
50 1 7 29 41 79 89 94 94 95
100 2 27 63 73 87 91 92 94 94
100 1 26 65 73 87 93 93 94 95
200 4 62 83 86 92 93 94 94 95
200 3 62 81 86 90 92 93 95 95
400 33 85 88 90 92 94 94 94 94
400 28 83 87 88 91 93 92 93 94
800 71 89 91 91 94 94 94 94 95
800 70 87 91 90 92 93 93 93 94

The total number of Monte Carlo repetitions is 1000.
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Table 4: Mean bias as % of the true parameter values for overlapping draws

n,κ 0.2 0.5 0.8 1 2 5 10 20 50
50 0 0 1 0 0 0 0 0 0
50 -1 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0 0 0
800 0 0 0 0 0 0 0 0 0
800 0 0 0 0 0 0 0 0 0

The total number of Monte Carlo repetitions is 1000.

We also report the mean bias and root mean square error for overlapping draws in tables

4 to 6 and for independent draws in tables 5 to 7. Overlapping draws have almost no bias.

The largest bias is 1% of the true parameter value. Compared to independent draws in 5,

overlapping draws tend to have smaller bias for very small n and R/n. Comparing tables 6

and 7, independent and overlapping draws have similar RMSE.

Finally, Figure 6 graphically illustrates the difference in the coverage probabilities be-

tween overlapping and independent draws. It plots the difference between the absolute

deviation of independent draws coverage from 95% and the absolute deviation of overlap-

ping draws coverage from 95%. A positive value means independent draws performs worse

than overlapping draws.

7 Conclusion

We provide an asymptotic theory for simulated GMM and simulated MLE for nonsmooth

simulated objective function. The total number of simulations, R, has to increase without

bound but can be much smaller than the total number of observations. In this case, the

error in the parameter estimates is dominated by the simulation errors. This is a necessary

cost of inference when the simulation model is very intensive to compute.
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Table 5: Mean bias as % of the true parameter values for independent draws

n,κ 0.2 0.5 0.8 1 2 5 10 20 50
50 -1 0 0 0 0 0 0 0 0
50 -2 0 0 0 0 0 0 0 0
100 -1 0 0 0 0 0 0 0 0
100 -1 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0
200 -1 0 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0 0 0
400 0 0 0 0 0 0 0 0 0
800 0 0 0 0 0 0 0 0 0
800 0 0 0 0 0 0 0 0 0

The total number of Monte Carlo repetitions is 1000.

Table 6: RMSE as % of the true parameter values for overlapping draws

n,κ 0.2 0.5 0.8 1 2 5 10 20 50
50 14 10 9 8 8 8 7 7 7
50 10 8 7 7 7 6 6 5 5
100 9 6 6 6 6 5 5 5 5
100 8 5 4 4 3 3 3 3 3
200 5 5 5 4 4 4 3 4 3
200 5 4 3 3 3 3 2 2 2
400 4 3 3 3 2 2 2 2 2
400 3 3 2 2 2 2 2 2 2
800 3 2 2 2 2 1 2 1 2
800 2 2 1 1 1 1 1 1 1

The total number of Monte Carlo repetitions is 1000.
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Figure 1: Difference in coverage probabilities between independent and overlapping draws
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Table 7: RMSE as % of the true parameter values for independent draws

n,κ 0.2 0.5 0.8 1 2 5 10 20 50
50 10 8 7 8 8 6 7 7 8
50 11 6 6 6 7 6 6 6 6
100 7 6 6 5 5 5 5 5 5
100 7 3 3 3 4 3 3 3 3
200 4 4 4 3 4 3 3 4 3
200 4 2 2 2 3 2 2 2 2
400 3 2 2 2 2 2 2 2 2
400 2 2 2 2 2 2 1 2 2
800 2 2 2 2 1 2 2 1 1
800 1 1 1 1 1 1 1 1 1

The total number of Monte Carlo repetitions is 1000.
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Kristensen, D., and B. Salanié (2013): “Higher order properties of approximate estimators,”
CAM Working Papers.

28



Laroque, G., and B. Salanie (1989): “Estimation of multi-market fix-price models: An ap-
plication of pseudo maximum likelihood methods,” Econometrica: Journal of the Econometric
Society, pp. 831–860.

Laroque, G., and B. Salanié (1993): “Simulation-based estimation of models with lagged latent
variables,” Journal of Applied Econometrics, 8(S1), S119–S133.

Lee, D., and K. Song (2015): “Simulated MLE for Discrete Choices using Transformed Simulated
Frequencies,” Journal of Econometrics, 187, 131–153.

Lee, L. (1992): “On efficiency of methods of simulated moments and maximum simulated likeli-
hood estimation of discrete response models,” Econometric Theory, 8, 518–552.

(1995): “Asymptotic bias in simulated maximum likelihood estimation of discrete choice
models,” Econometric Theory, 11, 437–483.

Lerman, S., and C. Manski (1981): “On the Use of Simulated Frequencies to Approximate
Choice Probabilities,” in Structural Analysis of Discrete Data with Econometric Applications,
ed. by C. Manski, and D. McFadden. MIT Press.

McFadden, D. (1989): “A Method of Simulated Moments for Estimation of Discrete Response
Models without Numerical Integration,” Econometrica.

Neumeyer, N. (2004): “A central limit theorem for two-sample U-processes,” Statistics & Prob-
ability Letters, 67, 73–85.

Newey, W., and D. McFadden (1994): “Large Sample Estimation and Hypothesis Testing,”
in Handbook of Econometrics, Vol. 4, ed. by R. Engle, and D. McFadden, pp. 2113–2241. North
Holland.

Nolan, D., and D. Pollard (1987): “U-processes:rates of convergence,” The Annals of Statis-
tics, pp. 780–799.

(1988): “Functional limit theorems for U-processes,” The Annals of Probability, pp. 1291–
1298.

Pakes, A., and D. Pollard (1989): “Simulation and the Asymptotics of Optimization Estima-
tors,” Econometrica, 57, 1027–1057.

Pollard, D. (1984): Convergence of Stochastic Processes. Springer Verlag.

Sherman, R. P. (1993): “The limiting distribution of the maximum rank correlation estimator,”
Econometrica, 61, 123–137.

Smith, A. A. (1993): “Estimating nonlinear time-series models using simulated vector autoregres-
sions,” Journal of Applied Econometrics, 8(S1).

Stern, S. (1992): “A method for smoothing simulated moments of discrete probabilities in multi-
nomial probit models,” Econometrica, 60(4), 943–952.

Train, K. (2003): Discrete choice methods with simulation. Cambridge Univ Pr.

van der Vaart, A. (1999): Asymptotic Statistics. Cambridge University Press, Cambridge, UK.

29



Van der Vaart, A. W., and J. A. Wellner (1996): Weak convergence and empirical processes.
Springer-Verlag, New York.

A Technical Addendum

Proof of Lemma 1

Proof Consider first the case when the moment condition q (z, ω, θ) is univariate, so that

d = 1. The first statement (a) follows from Theorem 2.5 in Neumeyer (2004). The proof of

part (b) resembles Theorem 2.7 in Neumeyer (2004) but does not require n/(n + R)→ κ ∈

(0, 1). First define ŨnR(θ) =
√
m

nR
S̃nR(θ). It follows from part (a) that

sup
θ∈Θ
||ŨnR(θ)|| = Op

(√
m

nR

)
= op(1).

Since the following equality follows: UnR(θ) = ŨnR(θ) +
√
m(Pn − P )g(·, θ) +

√
m(QR −

Q)h(·, θ), it then only remains to verify the stochastic equicontinuity conditions for the two

projection terms:

sup
d(θ1,θ2)=o(1)

||
√
m(Pn − P )(g(·, θ1)− g(·, θ2))|| = op(1),

and

sup
d(θ1,θ2)=o(1)

||
√
m(QR −Q)(h(·, θ1)− h(·, θ2))|| = op(1).

This in turn follows from m ≤ n,R and the equicontinuity lemma of Pollard (1984), p. 150.

Part (c) mimicks Theorem 2.9 in Neumeyer (2004), noting that

1

nR
SnR(θ)− g(θ) =

1

nR
S̃nR(θ) + (Pn − P )g(·, θ) + (QR −Q)h(·, θ),

and invoking part (a) and Theorem 24 of Pollard (1984), p. 25.

When the moment conditions q (z, ω, θ) are multivariate, so that d > 1, the above argu-

ments apply to each univariate element of the vector moment condition q (z, ω, θ). 2

LEMMA 3 Let θ̂
p−→ θ0, where g(θ) = 0 if and only if θ = θ0, which is an interior point of

the compact Θ. If

i. ‖ĝ(θ̂)‖Wn ≤ infθ ‖ĝ(θ)‖Wn + op(m
−1/2).
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ii. Wn = W + op(1) where W is positive definite.

iii. g(θ) is continuously differentiable at θ0 with a full rank derivative matrix G.

iv. supd(θ,θ0)=o(1)

√
m ‖ĝ(θ)− g(θ)− ĝ(θ0)‖ = op(1), for m ≡ n ∧R.

v.
√
m ĝ(θ0)

d−→ N(0,Σ).

Then the following result holds

√
m(θ̂ − θ0)

d−→ N(0, (G′WG)−1G′WΣWG(G′WG)−1). �

In particular, Lemma 1.b delivers condition [iv]. Condition [v] is implied by Lemma 1.a

because

√
mĝ(θ0) = ŨnR(θ0) +

√
m(Pn − P )g(·, θ0) +

√
m(QR −Q)h(·, θ0)

=
√
m(Pn − P )g(·, θ) +

√
m(QR −Q)h(·, θ0) + op(1)

d−→ N(0, (1 ∧ κ)Σg + (1 ∧ 1/κ)Σh).

Recall a general result (see for example Theorem 3.2.16 of Van der Vaart and Wellner

(1996)), which for completeness is restated as the following lemma.

LEMMA 4
√
m(θ̂ − θ0)

d−→ N(0, H−1ΣH−1)

under the following conditions:

1. L̂(θ̂) ≥ supθ∈Θ L̂(θ)− op( 1
m

);

2. θ̂
p−→ θ0;

3. θ0 is an interior point of Θ;

4. L(θ) is twice continuously differentiable in an open neighborhood of θ0 with positive

definite Hessian H(θ);

5. There exists D̂ such that
√
mD̂

d−→ N(0,Σ); and such that
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6. For any δm → 0 and for R̂(θ) = L̂ (θ)− L (θ)− L̂ (θ0) + L(θ0)− D̂′ (θ − θ0),

sup
‖θ−θ0‖≤δm

mR̂(θ)

1 +m ‖θ − θ0‖2
= op (1) . (8)

(If θ̂ is known to be rm consistent, i.e., θ̂ − θ0 = op(1/rm) for rm → ∞, then Condition 6

only has to hold for δm = op(1/rm).)

LEMMA 5 Let {am}, {bm}, and {cm} be sequences of positive numbers that tend to in-

finity. Suppose

1. L̂(θ̂) ≥ L̂(θ0)−Op(a
−1
m );

2. θ̂
p−→ θ0;

3. In a neighborhood of θ0 there is a κ̄ > 0 such that L(θ) ≤ L(θ0)− κ̄‖θ − θ0‖2;

4. For every sequence of positive numbers {δm} that converges to zero, ‖θm − θ0‖ <

δm implies
∣∣∣L̂(θm)− L̂(θ0)− L(θm) + L(θ0)

∣∣∣ ≤ Op(‖θm − θ0‖/bm) + op(‖θm − θ0‖2) +

Op(1/cm) .

then ∥∥∥ θ̂ ∥∥∥ = Op

(
1√
dm

)
,

where dm = min (am, b
2
m, cm).

Proof The proof is a modification of Sherman (1993). Condition 2 implies that there is a

sequence of positive numbers {δm} that converges to zero slowly enough that P (‖θ̂ − θ0‖ ≤

δm)→ 1. When ‖θ̂ − θ0‖ ≤ δm we have from Conditions 1 and 2 that

κ̄‖θ̂‖2 −Op(1/am) ≤ L̂(θ̂)− L̂(θ0)− L(θ̂) + L(θ0) ≤ Op

(
‖θ̂‖/bm

)
+ op

(
‖θ̂‖2

)
+Op(1/cm)

whence

[κ̄+ op(1)] ‖θ̂‖2 ≤ Op(1/am) +Op

(
‖θ̂‖/bm

)
+Op(1/cm) ≤ Op(1/dm) +Op

(
‖θ̂‖/

√
dm

)
.

The remaining arguments then follow exactly from 2. 2
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