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ABSTRACT

This is terse summary of the asymptotic theory of least mean distance estimation and testing
for nonlinear statistical models together with illustrative application to least squares and
maximum likelihood estimation. It is less general than Gallant (1987, Chapter 3) because
the true parameter may not drift, estimates may not depend on a preliminary estimate of a

nuisance parameter, and the model must be correctly specified.



1 Estimation Theory

1.1 Setup
Structural model: q(y, ¢, \°) = e; (must be computable)
Reduced form: y;, = Y (ey, 24, \°) (need only exist)
Distance function: s(y,z, A) (small when z & A fit y well)

e; independent, each with distribution P(e)
A% in A which is a closed & bounded subset of R?

sn(A) = (1/n) X% s(yt, 4, A) (sample objective function)
A, = argmin, s, (\) (the estimator)

s2(N) = (1/n) X0, [s[Y (e, x4, A°), ¢, A] dP(e) (mean of sample objective function)

n

A° = argmin, s2 () (implies correct specification)

1.2 Limits

Throughout, the expression lim, ,, U, = c a.s. is to be interpreted as follows. U, is a
random variable depending on {(e;, ;) }$2, and c is a constant. The sequence {z;}$2, is held
fixed and the probability is zero that a sequence {e;}$2, occurs such that lim, ,, U, # c.
If z; is random then this means that probabilities are being computed with respect to the
conditional distribution of {e;}7°, given {z;}$°,. The a.s. qualifier, meaning almost surely,

is often omitted below.

1.3 Strong law of large numbers

If the errors {e;} are independently and identically distributed, as assumed above, then

sample averages converge to population averages:
1 n
Jig 153 g(e) = [ ge) dP(e) =0

for any g(e) such that [; |g(e)| dP(e) < oo.



1.4 Stability condition on z;

Chaotic data, data obtained by replication, data obtained by sampling a distribution, etc.
have the property that there is a distribution pu(x), sometimes called the design measure,

such that
1 n
lim |— —/ d =0
nggo|nt§:1g(xt) . 9(@) du(2)]

for continuous g(x) such that [, |g(z)|du(z) < 0o

1.5 Uniform strong law of large numbers

For sequences { (e, z;) }22, as above, which are called Cesaro sum generators, sample averages

converge uniformly to population averages:

gglgloglgflﬁzg et Tt )—/X/ag(e,x,k) dP(e)dp(z)| =

for continuous g(e, z, A) such that [ [ maxyea |g(e,z, A)| dP(e)dpu(zr) < co. Furthermore,

hmmax\—z/ gle, zi, \) dP(e // (e, 2, \) dP(e)du(z)| = 0.

n—o0 A\éA n

1.6 Relevance of USLLN

The uniform strong law of large numbers implies that if lim, 5\n = )X° then lim,_,
(1/n) S0 g(ew, T, An) = [y Je 9(e, 2, \°) dP(e)du(x). This can be used to show that sample
averages that depend upon an estimate, such as a variance estimate computed from residuals,
converge to their population counterpart.

The function A = argmin,s,(A) is continuous with respect to uniform convergence so
uniform convergence of s,(\) to a function s*(\) that has a unique minimum implies A,
converges to argmin, s*(\). This fact is proved below. Usually s*(A) is easy to compute and
the result is easy to apply. Note that A\° = argmin, s2()\) together with uniform convergence

of s2(A\) to s*(\) implies that A\° = argmin, s*(}\).



1.7 Continuity of argmin

If A is closed and bounded, {s,()\)}22, is a sequence of continuous functions, and s*(}) is

continuous with a unique minimum \° on A then

lim max |[s,(A) — s*(A\)| =0

n—o0 \eA
implies

lim arg Inl/l\] sn(N) = arg min s (A).

Proof. Let \° = argmin,,s*(\) and let \, = argmin, ,s,(A). If A is closed and bounded
then every subsequence {\,,_} of {\,} has a convergent subsubsequence {5\%],} with lim-
it point lim; o S\nmj = \*. Now Stim, (S\nmj) < St (A\°) and uniform convergence imply

s*(\#) < s*(\?). Uniqueness of A\° implies \# = X°. Thus, every limit point of {\,} is \°.
1.8 First order conditions
(0/0A)sn(An) =0
1.9 Taylor’s expansion of first order conditions
[(87/0A0N )50 (An)]v/n(An = A7) = —y/n(8/ON)5n(X°)
A, is on the line segment joining \° to ) hence lim,, o A, = \°.

1.10 Asymptotics of right hand side

n

VR(8/0N)s,(X°) = (1/y/n) D _(0/ON)s[Y (es, ms, A°), &, A]|rere

t=1



Mean: E[v/n(0/0N)s,(A°)] = 0 because \° = argmin, s2(\)

Variance: Z,, = Var[y/n(9/0X)s,(A\°)]

= (1/”) E?:l fg(a/a)\)S[Y(e, Tt, )‘0)’ Tt, )‘] (8/8/\,)8[Y(€’ T, )‘0)7 T, /\] dP(e)|)\:5\n
Limit: lim,, oo Z, =7

Z = [y [c(0/ON)s[Y (e, z, ), z, A\](O/ON)s[Y (e, z, \°), z, A] dP(e)du(z)|x=xe
Estimator: Z, = (1/n) S0, (8/0A)s(ys, T4, An) (8/ON) s (42, Tt An)

Limit: lim, oo Z, = Z

Central limit theorem: /n(8/0\)s,(A\°) 5 N,(0,7)

1.11 Asymptotics of left hand side
Tn = (070NN )3(\n)

Limit: lim, oo Jp = J
T = [y [¢(0?/ONON)s[Y (e,z, X°), z, \| dP(e)dp(x) [ x=xo

Estimator: J, = (1/n) X7, (82/0AON)s(yy, T4, An)
Limit: J = lim,_,o0 J,,
1.12 Slutsky’s theorem
T/ A — X°) = —/n(8/0N) 5, (A°)
—/n(8/0N)5,(\°) S N,(0,7)
=
vV, — X°) 5 N,(0,V)
V=()"Z(J)!



2 Hypothesis Testing Theory

2.1 Summary of Estimation Theory

Structural model: q(y, ¢, \°) = e; (must be computable)
Reduced form: y;, = Y (ey, 24, \°) (need only exist)
Distance function: s(y, z, A) (small when z & A fit y well)

Hypothesis: H : h(\°) = 0 against A : h(\°) # 0

e; independent, each with distribution P(e)
(e, z¢) a Cesaro sum generator

A% in A which is a closed and bounded subset of RP

sn(A) = (1/n) iy s(ye, 71, A)

An = argmin, s, (A) (unconstrained estimator)

>

n = argming () (constrained estimator)

$a(A) = (1/n) Xiy [ s[Y (e, 21, %), 21, A dP(e)

n

A% = argmin, s?2()\) (implies correct specification)

A? = argminy,)_,s; () (implies null hypothesis true)
limy, o0 Ay = A° (proved in Subsections 1.6 & 1.7)
limy, o0 Ay = A° (the proof is the same)



V(0/0N)sn(X7) = (1//n) Eiei (0/0N)s[Y (er, 1, A), 2, Al[a=xe
Mean: £[y/n(0/0N)s,(A°)] = 0 because \° = argmin, s2(\)
Variance: Z,, = Var[y/n(9/0\)s,(A\°)]

Limit: limy,_e0 Zy, = limy o0 Zy = limy o0 Zy = Z

T, = lim(1/n) X7, (3/0N)s(ys, 2¢, M) (B)ON)3(ye, 24, An)

T, = lim(1/n) 557 (8/0N)s (g, 1, A )(3/3>\')5(yt,xt, An)
Central limit theorem: /n(9/0\)s,(\°) = Np(O,I)

T = (02/020N)s2 (X°)
Limit: lim, o0 Jp = limyy00 Jp = limy 00 T = J
Tn = (1/n) S5, (0% /0AON)s(yt, 1, An)
T = (1/n) =, (8% /0NN sy, 1y An)

Vn(hn — X°) 5 N,(0,V)
V=(J7)"'Z(J)!

2.2 Order

Let {a,}?°, be a sequence of numbers. Writing a,, = o(n®) means lim,,_,, a,/n* = 0. Writing
a, = O(n®) means there is a bound B and an N such that |a,/n%| < B for all n > N. The
exponent o may be positive, negative, or zero.

Let {X,}2, be a sequence of random variables. Writing X,, = 05(n®) means P (lim,,
X, /n* = 0) = 1. Writing X,, = Os(n®) means there is a bound B and an N such that
P(|X,/n* < B for all n > N) = 1. The exponent o may be positive, negative, or zero.

Let {X,,}°, be a sequence of random variables. Writing X,, = 0,(n*) means given € > 0
and § > 0 there is an N such that P(|X,/n%| > €) < ¢ for all n > N. Writing X,, = O,(n®)
means given § > 0 there is a bound B and an N such that P(|X,/n% > B) < ¢ for all
n > N. The exponent o may be positive, negative, or zero.

If X,, converges in distribution then X,, = O,(1).

The obvious algebra holds: o(n®)o(n?) = o(n®*#), o(n*)O(nf) = o(n**#), o(n*)o,(nf) =
0p(1%8), 0,(n%)0, (1) = 0,(1®*#), 0(n)0y(n) = 0,(n*), 0,(n*)0y(n) = 0,(n**?), etc.



2.3 Distribution of the Constrained Estimator

2.3.1 Lagrangian
LA, 0) = s,(N) +6'h(N)
2.3.2 First order conditions
0= (3/0X)s,(N) + 6'(8/0X)h(N)
0=~h(}))
2.3.3 Taylor’s expansions

Note that for any A, on the line segment joining A, to A° we have (92/0AON)sn(\n) =
(02/ONON )5, (X°) + 04(1), (B/ON)R(A) = (8/ON)h(N°) + 0s(1). Write H = (0/0N)h(N°),
), T

J as above, H = (3/0N)h(N,), T = (82/0MON)s,(\n), H = (8/0N)h()\y,),
(82/0AON )5, (\n), etc.

By Taylor’s theorem
0= H/n(A— X\

V(8/0N) 5, (M) = /1(0)ON) 50 (A°) + T /(A — X°).
Thus
[HT 'HTHT 1 /n(8/0N)s,(\°) = [HITHTHT /n(0/0N)sn (M)
CHI B HT T /n(n — X°)
= [HJ 'H1'HJ 'H'\/n -0
= /nb.

Since [HF'H')™', HT ', and /n(9/0\)s,(\°) are each O,(1) we have that

2.3.4 Key equations

H'(HF'H)Y THJ '/n(0/0))s,(\°)
= [H'(HJ'H)*HJ ' + 0,(1)]\/n(8/0))5,(X°)

7



= H'(HJ'H) 'HT'\/n(0]ON)s,(X°) + 0,(1)
(HI'H) T HI  [y/n(0/0N)sn(An) — Tv/n(An — A°)] + 0p(1)
"HI*HYTHT /n(8)0N)s, (M) — H'(HT TH') L Hy/n(hy — A°) + 0p(1)

|
Ay

I
>

= H'(HJ'H)'HJ '\/n(8/0N)sn(An) — 0 + 0,(1)

= —H'(HJ 'HY'HJ 'H'\/nf' + 0,(1)

= —[H +0,()][I + 05(1)]\/nb" + 0,(1)

= —H'\/nf + 0,(1) + 0,(1)

= V/n(8/0N)50(An) + 0p(1).
2.3.5 Main result
Joining the first line of Subsection 2.3.4 to the last we have

H'(HJ ' H) T HT 7'/n(0/00)50(X%) = /n(8/0X)sn (M) + 0p(1).

2.4 Continuity theorem

If X, 5 X and g(x) is continuous then g(X,) 4 g(X). For example, if X, 4 X and
A, — A where X is N(0,3), A is symmetric, and AY is idempotent then X A, X,, converges

in distribution to a chi square with rank(A) degrees freedom.

2.5 Wald test
By Taylor’s theorem
V[h(O) — k(X)) = Hy/n(A, — X°).
Because h(\°) = 0
Vnh(\) = Hy/n(A, — X°).
Because /n(A, — X°) 5 N,(0,V) and H = H + 0,(1)

Vnh(A ) N, (0, HVH').

Thus
W =h'(HVH') 'h

converges in distribution to a chi square with ¢ degrees freedom by Subsection 2.4.

8



2.6 Likelihood ratio test
By Taylor’s theorem

(0/0N )50 (M) = (8/0X)s0(An) +T (A — An)
= 0+J0 —A)

L = 2n[sn(A) = sn(An)]
= 20(9/0N) 50 (An) An = M) + Vn(hn — M) T v/ (A — An)
= 0+ n(0/0N)sy(\a)T *TT /1(0/0N) 50 (Mn)
= Vn(0/0X)sn(A)[T ™! + 04(1)]y/n(8/0N) 50 (An)
= /n(0/ON)su(\a) T v/1(0)0N) 50 (An) + 0,(1)

Substituting
Vn(8/0N)s,(A\,) = H'(HT " H') " HT ' \/n(8/0X)5,(A°) + 0,(1)

from Subsection 2.3.5 and noting that this equation implies \/n(8/0\)s,(A\,) = o0p(1) we
have

L=/n(0/0N)s,(\°)T 'H'(HJ *H) 'HJ '\/n(8/0)\)s,()\°) + 0,(1)
Recall v/n(9/0))sn(X) 5 N,(0,T). If H'VH = H'J 'H then J ‘H'(HJ ‘H) 'HJ T

is idempotent and

~

L =20[s0(An) — 50 (An)]

converges in distribution to a chi square with ¢ degrees freedom by Subsection 2.4.

2.7 Lagrange multiplier test
Using
Vn(8/0N)s,(A\,) = H'(HT " H') " HT ' \/n(8/0X)5,()°) + 0,(1)

from Subsection 2.3.5 we have that

R = n(0/oX)s,(A\) T H'(HVH) *HT (0/0N)s5n(A\n)
= n(0/ON)s, (M) T TH'(HVH" THT 1(8/0N) 8 (\n) + 0p(1)
= n(0/0N)s,(\) T *H'(HVH ) *HJT(0/0)\)5,(\2) + 0,(1).

9



Recall that \/n(8/0X)s,(X°) 5 N,(0,T). Because J~'H'(HVH')"'HJ T is idempotent
R =n(8/0N)s,(A\) T "H'(HVH) *HT (8/0N)sn(An)

converges in distribution to a chi square with ¢ degrees freedom by Subsection 2.4.

10



3 Applications

3.1 Least squares

yr = f(24,0°) + e
g(et) =0
Var(e;) = o?

A=10

Structural model: e; = q(y;, 24, 0°) = yy — f (x4, 0°)
Reduced form: y, = Y (ey, 24, 60°) = f(x4,60°) + e,
Distance function: s(y,z,0) = [y — f(x,0)]?

(0/00)s(y, z,0) = —2[y — f(,0)](0/09) f(x,0)
(0%/0006")s(y, z, 0) = 2[(9/00) f (x, 0)][(9/00) f (., 0)] = 2[y — f(x,0)](6%/0000") f (x.0)

sn(0) = (1/n) Ziilye — f (20, 0))?

sp(0) = 0 + (1/n) Ty [f (2, 0°) — f (20, 0))?

s°(0) = 0% + [xf (21, 0°) — f (21, 0)]” dpu(z)

p{z: f(z,0) # f(z,0°)} = 6° = argmin s2(#) = 6° = argmin s*(6)

I = [ 40°((0/00)f(x,0)]1(0/00) f (x,0)] du(z)lo-p

T = limy_,o0(1/n)d0? 30, [(0/00) f (24, 0)][(9/00) f (1, 0)]'l_3,

T = limyo0(1/n) Ty 4lye — £ (21, 02)12[(9/00) f (1, 0,)1[(9/06) f (1, 0))

0? =lim,_,o (1/n) Siilye — f (@, én)]Q

J = Jx 2[(0/00) f(x,0)l[(8/0) f (x,0)] dp(z)|p=0-
T = limy o0 (1/n) £y 2((8/06)f (w,0.)1[(0/08) f (,6,))

V = 0*{ [+ [(0/09) f (x,0)]((0/06) f (x,0)) dpa(x)|o=so }

11



3.2 Maximum likelihood

Y = [f(x1,0°) + 0%,

5(€t) =0

Var(e;) =1

)\ = (01’ 0.2)1

Structural model: e; = q(yy, x4, A°) = [y — f(z4,60°)]/0°
Reduced form: y, = Y (ey, 24, 6°) = f(xy,0°) + 0%
Distance function: s(y,z, ) = (1/2){logo® + o2y — f(z,0)]*}

(0/00)s(y, x,A) = —o~%[y — f(x,0)](0/00)f (x,0)

(0%/0000)s(y, z, A) = 0=2[(9/00) f (x,0)][(0/00) f (x,0)]' — o[y — f(x,0)](0%/0606") f (,0)
(0/00%)s(y, 2, A) = (1/2){o™* — 07*[y — f(x,0)]*}

(0%/00°00%)s(y, x, A) = (1/2){=07" + 07°[y — f(x,0)]*}

(0%/00%00)s(y, =, A) = o[y — f(x,0)](0/00) f(z,0)

sn(A) = (1/n) £, (1/2){log0® + 0 ~*[y — f(x, )]’}
sp(A) = (1/2){logo® + (0°/0)* + (1/n) iy 07 2[f (24, 6%) — f(x1, 0)]}

s'(A) = (1/2){logo® + (0°/0)* + [y 072[f (21,0°) — f (1, 0)]* dps(x)}

p{z: f(z,0) # f(z,0°)} = (6°,0°) = argmin s2(\) = (6°,0°) = argmin s*(\)

. ( (o) Q (1/2)(00)35(e3>q)
(1/2)(0)E()g (1/4)(0) Var(e?)

12



¢ = Jx(0/00)f(z,0)] du(x)|s—p-
Q = [x[(0/90)f(x,0)1[(0/20)f(x,0)] du(x)|o=0-

.o ( CORC (oo>3e(e3>qu)
(PEE)IQ (o) Var(e?)
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