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SummaryThis document contains proofs and the algorithm display that were omitted fromGallant, A. Ronald, and Jonathan R. Long (1996), \Estimating Stochastic Di�er-ential Equations E�ciently by MinimumChi Square," Biometrika 84, 125��141In addition, de�nitions and statements of theorems are reproduced. The following is asummary of the complete paper.We propose a minimum chi-square estimator for the parameters of an ergodic system ofstochastic di�erential equations with partially observed state. We prove that the e�ciencyof the estimator approaches that of maximum likelihood as the number of moment functionsentering the chi-square criterion increases and as the number of past observations enteringeach moment function increases. The minimized criterion is asymptotically chi-squared andcan be used to test system adequacy. When a �tted system is rejected, inspecting studentizedmoments suggests how the �tted system might be modi�ed to improve the �t. The methodand diagnostic tests are applied to daily observations on the U.S. dollar to Deutschmarkexchange rate from 1977 to 1992.
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1. The estimation problemWe wish to estimate the parameter � in the system of stochastic di�erential equationsdUt = A(t; Ut; �)dt+B(t; Ut; �)dWt (0 � t <1): (1)The parameter � has dimension p�; the state vector Ut has dimension d; Wt is a k-dimensionalvector of independent Wiener processes, A(�; �; �) maps [0;1)�<d into <d; and B(�; �; �) isa d�k matrix comprised of the column vectors B1(�; �; �); � � � ; Bk(�; �; �); each of which maps[0;1)�<d into <d: The state Ut is interpreted as the solution of the integral equationsUt = U0 + Z t0 A(s; Us; �) ds + kXi=1 Z t0 Bi(s; Us; �) dWiswhere R t0 Bi(s; Us; �) dWis denotes the Itô stochastic integral (Karatzas & Shreve, 1991).The system is observed at equally spaced time intervals t = 0; 1; : : : and selected charac-teristics yt = T (Ut+L) (t = �L;�L+ 1; : : :) (2)of the state are recorded, where yt is an M -dimensional vector and L � 0 is the number oflagged variables. Throughout data are denoted by f~ytg; simulations by fŷtg; and the randomvariables to which they correspond by fytg:We assume that Ut; and hence yt; is stationary and ergodic for � 2 R � <p�. We furtherassume that the stationary distribution of yt is absolutely continuous. Thus, for each settingof parameter � and lag length L; there exists a time-invariant density p(y�L; : : : ; y0j�) suchthat limN!1 1N NXt=0 g(ŷt�L; : : : ; ŷt) = Z � � �Z g(y�L; : : : ; y0) p(y�L; : : : ; y0j�) dy�L � � � dy0 (3)where fŷt : t = �L; : : : ;Ng is realization of length N +L+1 from the system. This assumesthat g is integrable and that either U0 is a sample from the stationary distribution of Utor that a longer realization was observed and enough initial observations were discarded fortransients to have dissipated.2. The auxiliary model2�1. A dense class of smooth densities1



Denote a partial derivative of a function f(�) on <` byD�f(�) = � @�1@��11 � � � � � @�`@��`` �f(�);where � = (�1; : : : ; �`). Letting j�j = j�1j + � � � + j�`j; the Sobolev norm of f with respectto a weight function � iskfkm;p;� = n Xj�j�m Z jD�f(�)jp�(�) d�o1=p (1 � p <1)kfkm;1;� = maxj�j�m sup�2<` jD�f(�)j�(�) (p =1):Gallant & Nychka (1987) proposed a nonparametric density estimator for densities in aclass H of smooth densities on <` (` � 1) :Given an integer m0 > `=2; a bound B0; some small �0 > 0; some �0 > `=2; H consistsof those density functions h that have the form h(�) = e2(�) + �0�(�); with kekm0;2;�0 < B0;where �0(�) = (1 + � 0�)�0 and �(�) = (2�)�`=2e��0�=2. We shall take H as the parameterspace for the density estimation problem.Writing �� = ��11 �����`` ; h 2 H has the representation h(�) = (Pj�j<1 a���)2�(�)+�0�(�):Convergence of (Pj�j<1 a���)2�(�) is with respect to the norm k � kbmo�`=2c;1;� where �(�) =(1 + � 0�)� for some � that satis�es `=2 < � < �0 and b�c denotes the integer part.Let PK(�) =Pj�j<K a��� denote the truncation of Pj�j<1 a��� above to a polynomial ofdegree K on <`: Put �a� = a�=[RfPK(�)g2�(�) d� + �0]1=2 and let � = (�1; : : : ; �pK) representthe normalized coe�cients f�a� : 1 � j�j � Kg: A truncated expansion of h is hK(�j�) =:fgK(�j�)g2�(�) + �0�(�) where gK(�j�) =Pj�j<K �a���: These truncations are dense in H.2�2. Regularity conditionsDe�ne x = x�1 = (y�L; : : : ; y�1); y = y0; p(x; yj�) = p(y�L; : : : ; y0j�); p(xj�) =R p(y�L; : : : ; y0j�) dy0; p(yjx; �) = p(x; yj�)=p(xj�); and ` = M(L + 1): Note that if �o de-notes the true value of the parameters in the system (1), then �o is also the true value of �in the density p(x; yj�) (� 2 R � <p�) induced by the system according to (2) and (3):Assumption 1 The process fVt : t = �L; : : : ;1g obtained by sampling the system (1)at times t = 0; 1; : : : and putting Vt�L = Ut is strong mixing of size �4r=(r � 4) forsome r > 4: The conditional density p(yjx; �) of p(x; yj�) in (3) is de�ned on the clo-sure �Ro of an open ball Ro that contains �o: The true value �o is an isolated min-imum of �s(�) := R R log p(yjx; �)p(x; yj�o) dydx and the matrix R R f(@=@�) log p(yjx; �o)g2



f(@=@�) log p(yjx; �o)g0p(x; yj�o) dydx is nonsingular. The derivatives (@=@�i) log p(yjx; �)and (@2=@�i@�j) log p(yjx; �) are continuous in � over �Ro and are dominated by a functiond(x,y) that has �nite r-th moment with respect to p(x; yj�o):Assumption 1 is the specialization to the present situation of Assumptions 1 to 6 ofGallant (1987, Chapter 7), which are standard regularity conditions for estimation of theparameters of a dynamic model by quasi maximum likelihood; see also Potscher & Prucha(1991a, 1991b). Because the process fVtg is strong mixing, so is f(xt; yt)g. Ergodicity off(xt; yt)g is then a conclusion of the strong law of large numbers (Gallant, 1987, Chapter 7,Theorem 1).Assumption 2 For some integer m0 > `=2; some bound B0; some small �0 > 0; and some�0 > max(2; `=2); p(x; yj�o) has the form p(x; yj�o) = e2(x; y)+�0�(x; y) with kekm0;2;�0 < B0;where �0(x; y) = (1 + x0x+ y0y)�0 and �(x; y) = (2�)�`=2e�x0x=2+y0y=2: Similarly for p(xj�o):Assumption 2 is su�cient to imply the Gallant-Nychka result stated in Subsection 2�1for � = (x; y) and ho(�) = p(x; yj�o): Thus, p(x; yj�o) has the representationp(x; yj�o) = fg(x; yj�)g2�(x; y) + �0�(x; y) (4)g(�j�) = Xj�j<1 a���:We shall use the truncated expansionfK(x; yj�) = fgK(x; yj�)g2�(x; y) + �0�(x; y) (5)gK(�j�) = Xj�j<K �a���described in Subsection 2�1 as the auxiliary model fK for the theoretical results in Section 4.For applications we shall make some algebraic modi�cations as described in Subsection 2�3below.Let �� = (��1; : : : ; ��pK) denote the coe�cients given by the Gallant-Nychka construction.If p(x; yj�o) is not itself a truncated expansion, then these di�er from the coe�cients �o =(�o1; : : : ; �opK) that solve the moment equations mK(�o; �) = 0; wheremK(�o; �) = Z Z @@� logffK(yjx; �)g p(x; yj�o) dydx;fK(yjx; �) = fK(x; yj�)=fK(xj�); fK(xj�) = Z fK(x; yj�)dy:3



Nonetheless, the coe�cients �o will serve as well as the coe�cients �� as stated in Theorem 1below. Note that here, and throughout, fK(xj�) is not the truncated expansion of p(xj�o)but rather the integral of the truncated expansion of p(x; yj�o):Theorem 1 Under Assumptions 1 and 2limK!1 kfK(y; xj�o)� p(y; xj�o)kbmo�`=2c;1;� = 0:With respect to the representation (4), the partial derivative of log p(x; yj�) is@@� log p(x; yj�) = 2n g(x; yj�)g2(x; yj�) + �o @@�g(x; yj�):Assumption 3 Both p(x; yj�o) and p(xj�o) possess moment generating functions, andZ Z na0 @@�g(x; yj�o)o2np(x; yj�o) + �(y)p(xj�o)odydx <1for every a 2 <p�:Assumptions 1 and 2 are technical conditions that imply standard properties of quasimaximum likelihood estimators and some intuitively plausible properties of estimators basedon Hermite expansions. For stochastic di�erential equations where p(x; yj�) is known inclosed form, they can often be veri�ed at sight. For instance, the Ornstein-Uhlenbeck processdUt = (�1 + �2Ut)dt + �3dWt generates a Gaussian density for observations; the processdUt = (�1+ �2Ut)dt+ �3(Ut)1=2dWt generates a gamma marginal and non-central chi-squareconditional. Restrictions on the parameters �i of these two processes that imply ergodicityare given in A��t-Sahalia (1996). Assumption 3 is central because it allows approximation ofthe score (@=@�) log p(x; yj�o) by a polynomial (Gallant, 1980).When the entire state vector Ut is not observed fytg may not be Markov. In this case,the asymptotic variance of the quasi maximum likelihood estimator of � based upon L lagsis (VoL;0)�1(VoL)(VoL;0)�1; whereVoL = VoL;0 + 1X�=1VoL;� + ( 1X�=1VoL;�)0; (6)VoL;� = En @@� log p(y� jx��1; �o)on @@� log p(y0jx�1; �o)o0; (7)E(W ) = Z � � �Z W (y�L; : : : ; y�)p(y�L; : : : ; y� j�o) dy�L� � � dy� ;4



and the asymptotic variance of the maximum likelihood estimator is (Vo)�1; whereVo = limn!1 1n nXt=1En @@� log p(ytjy0; : : : ; yt�1; �o)on @@� log p(ytjy0; : : : ; yt�1; �o)o0; (8)E(W ) = Z � � �Z W (y0; : : : ; yt)p(y0; : : : ; ytj�o) dy0 � � � dyt(Gallant, 1987, Chapter 7, Theorem 6). De�neMoK = Z Z n @@� log fK(yjx; �o)on @@� log p(yjx; �o)o0 p(x; yj�o) dydx; (9)IoK;0 = Z Z n @@� log fK(yjx; �o)on @@� log fK(yjx; �o)o0 p(x; yj�o) dydx: (10)We assume that an analysis based on L lags is valid for large L.Assumption 4 We require limL!1VoL;0 = limL!1VoL = Vo:In addition, b̂0(@=@�) log fK(yjx; �o) with b̂ = (IoK;0)�1(MoK)a; which is the L2 projectionof a0(@=@�) log p(yjx; �o) onto the linear span of (@=@�) log fK(yjx; �o); has fourth momentbounded uniformly in K for each a 2 <p�:The last requirement is plausible because a0(@=@�) log p(yjx; �o) has �nite fourth momentunder the assumptions in place. Since Lemma 2 implies a uniform bound on the secondmoment, the bound on the fourth moment can be relaxed by imposing a more stringentmixing requirement in Assumption 1. See Hall & Heyde (1980, p. 20) and the proof ofLemma 3. 2�3. A form suitable for applicationsThere is no need to retain the term �0�(�) in the truncated expansion hK(�j�) =fgK(�j�)g2�(�) + �0�(�) provided that those logfgK(�j�)g2 that become too small to havemachine representation during an optimization of the log likelihood are set to the smallestnumber that the machine can represent. In tests, optimizations using this strategy havebeen more e�cient and stable than methods that retained the term �0�(�): With the termdeleted, a change of location and scale prior to conditioning, and some rearrangement ofpolynomial coe�cients, the conditional density can be put in the formhK(ytjxt�1; �) = [PfR�1(y � �xt�1); xt�1g]2�fR�1(y � �xt�1)gjdet(R)j1=2 R fP (z; xt�1)g2�(z) dz ;5



where xt�1 = (yt�L; : : : ; yt�1); �xt�1 = b0 +Bxt�1; (11)P (z; x) = KzX�=0 KxX�=0a��x�z�; (12)and R is an upper triangular matrix. We refer to �x as the mean function and to P 2(z; x)�(z)as the Hermite polynomial.The ability of the model to approximate conditionally heteroscedastic data is much im-proved by replacing R above by Rxt�1; wherevech(Rxt�1) = �0 + P jxt�1 � �xt�2 j; (13)with vech(R) denoting a vector of length M(M +1)=2 containing the elements of the uppertriangle of R; and jxj denoting elementwise absolute value. We refer to Rx as the variancefunction. This yields the auxiliary model used in our applications:f(ytjxt�1; �) = [PfR�1xt�1(yt � �xt�1); xt�1g]2�fR�1xt�1(yt � �xt�1)gjdet(Rxt�1)j1=2 R fP (z; xt�1)g2�(z) dz : (14)The vector � contains the coe�cients A = (a��) of the polynomial (12), the coe�cients(b0; B) of the mean function (11), and the coe�cients (�0; P ) of the variance function(13).To achieve identi�cation, the coe�cient a0;0 is set to 1.There is no need for the number of lagged values of yt in the polynomial P (z; x); themean function �x; or the variance function Rx to be the same. Accordingly, denote themby Lp; L�; and Lr; respectively. This can by accomplished within the notational schemeabove by putting L = max(Lp; L�; Lr + L�) and setting certain elements of A; (b0; B); and(�0; P ) to zero. Also, when M is large, coe�cients a�� corresponding to monomials z� thatrepresent high order interactions can be set to zero with little e�ect on the adequacy ofapproximations. Let Iz = 0 indicate that no interaction coe�cients are set to zero, Iz = 1indicate that coe�cients corresponding to interactions z� of order larger than Kz � 1 are setto zero, and so on; similarly for x� and Ix: We also �nd that setting to zero the elementsof P in (13) that correspond to the o�-diagonal elements of Rx can improve the stability ofoptimizations with little e�ect on the adequacy of approximations.3. The minimum chi-square estimator6



The minimum chi-square estimator �̂n that we propose is computed as follows. Use theauxiliary model f(ytjyt�L; : : : ; yt�1; �) (� 2 � � Rp�) (15)given by (14) and the data f~yt : t = �L; : : : ; ng to compute the maximum likelihood estimate~�n := argmax�2� 1n nXt=0 logff(~ytj~yt�L; : : : ; ~yt�1; �)g (16)and the corresponding estimate of the information matrix~In := 1n nXt=0n @@� log f(~ytj~yt�L; : : : ; ~yt�1; ~�n)on @@� log f(~ytj~yt�L; : : : ; ~yt�1; ~�n)o0: (17)De�ne m(�; �) := Z � � �Z @@� logff(y0jy�L; : : : ; y�1; �)g p(y�L; : : : ; y0j�) dy�L� � � dy0 (18)which, for given � 2 R � <p�; is computed as an averagem(�; �) := 1N NXt=0 @@� logff(ŷtjŷt�L; : : : ; ŷt�1; �)g (19)over a long simulation fŷtg generated from the system (1) by means of simulation methods.The proposed minimum chi-square estimator is�̂n := argmin�2R m0(�; ~�n)(~In)�1m(�; ~�n): (20)Under regularity conditions implied by the restrictions placed on p(y�L; : : : ; y0j�) (� 2R � <p�) by Assumption 1, Gallant & Tauchen (1996) have investigated the asymptoticsof �̂n for auxiliary models f(y�L; : : : ; y0j�) (� 2 � � <p�) that satisfy standard regularityconditions for quasi maximum likelihood estimation such as Assumptions 1 to 6 of Gallant(1987, Chapter 7), or those listed in Potscher & Prucha (1991a, 1991b), which are similar toour Assumption 1. Their results are as follows. If �o is an isolated solution of the equationsm(�o; �) = 0 and p� < p�; then �̂n converges almost surely to �o and n 12 (�̂n � �o) convergesin distribution to Nh0; f(Mo)0(Io)�1(Mo)g�1i; whereIo = Z � � �Z n @@� log f(y0jx�1; �o)on @@� log f(y0jx�1; �o)o0 p(y�L; : : : ; y0; j�o) dy�L� � � dy0;7



x�1 = (y�L; : : : ; y�1); Mo = M(�o; �o); and M(�; �) = (@=@�0)m(�; �): Further,limn!1 M̂n =Mo and limn!1 ~In = Io almost surely, where M̂n = M(�̂n; ~�n):Under the null hypothesis that the system (1) is the correct model,L0 := nm0(�̂n; ~�n)(~In)�1m(�̂n; ~�n) (21)is asymptotically chi-squared on p� � p� degrees freedom. Under the null hypothesis thath(�o) = 0; where h maps R into <q;Lh := nnm0(�̂�; ~�n)(~In)�1m(�̂�; ~�n)�m0(�̂n; ~�n)(~In)�1m(�̂n; ~�n)ois asymptotically chi-squared on q degrees freedom where�̂� = argminh(�)=0 m0(�; ~�n)(~In)�1m(�; ~�n):Because Nh0;Io � (Mo)f(Mo)0(Io)�1(Mo)g�1(Mo)0i is the limiting distribution ofn 12m(�̂n; ~�n); when L0 exceeds the chi-square critical point inspection of the t-ratios Tn =S�1n n 12m(�̂n; ~�n); where Sn = �diag[~In � (M̂n)f(M̂n)0(~In)�1(M̂n)g�1(M̂n)0]�1=2; can suggestreasons for failure. Di�erent elements of the score correspond to di�erent characteristics ofthe data. For this purpose, the quasi-t-ratiosT̂n := f(diag ~In)1=2g�1n 12m(�̂n; ~�n); (22)which are under-estimates, are usually adequate and are cheaper to compute because theyavoid computation of M̂n; which must be done numerically.4. EfficiencyIn this section we state our main result, Theorem 2, which is established by means ofthree lemmas that are stated here. Proofs are in the Appendix.Theorem 2 Assumptions 1, 2, 3, and 4 implylimL!1 limK!1 limn!1 varfpn(�̂n � �o)g = (Vo)�1where (Vo)�1 is the asymptotic variance of the maximum likelihood estimator of � given by(8). 8



The implication of this result is that the asymptotic variance of the proposed minimumchi-square estimator (20) can be made as close as desired to the asymptotic variance of themaximum likelihood estimator by taking L and K suitably large. The result is general inthat it applies to any sequence fVtg1t=�L and density p(x; yj�) that satisfy Assumptions 1through 4. That is, the sequence fVtg1t=�L does not have to be generated by a stochasticdi�erential equation.In the remainder of this section, notation is as in Subsection 2�2: p(x; yj�) = p(y�L; : : : ;y0j�); p(xj�) = R p(y�L; : : : ; y0j�)dy0; x = x�1 = (y�L; : : : ; y�1); y = y0; fK(yjx; �) is givenby (5), MoK is given by (9), IoK;0 is given by (10), etc.Our �rst lemma states that if the scores of p(yjx; �o) are in the linear span of the scoresof fK(yjx; �o); then (MoK)0(IoK;0)�1(MoK) converges to VoL;0 as given by (7).Lemma 1 limK!1(MoK)0(IoK;0)�1(MoK) = VoL;0if and only iflimK!1minb Z Z na0 @@� log p(yjx; �o)� b0 @@� log fK(yjx; �o)o2 p(x; yj�o) dydx = 0for every a 2 <p�:The second lemma states that the scores of p(yjx; �o) are in the linear span of the scoresof fK(yjx; �o):Lemma 2 Assumptions 1, 2, and 3 implylimK!1minb Z Z na0 @@� log p(yjx; �o)� b0 @@� log fK(yjx; �o)o2 p(x; yj�o) dydx = 0for every a 2 <p�:The third lemma is of some interest in its own right because it states that the asymptoticvariance of the proposed minimum chi-square estimator can be made as close as desired tothe asymptotic variance (VoL;0)�1(VoL)(VoL;0)�1 of the quasi maximum likelihood estimator of� based on L lags by taking K suitably large. Thus, if the process fytg1t=�L is Markov, thenLemma 3, itself, implies e�ciency for large K:9



Lemma 3 Assumptions 1, 2, 3, and 4 implylimK!1 limn!1 varpn(�̂n � �o)g = (VoL;0)�1(VoL)(VoL;0)�1where VoL is given by (6) and VoL;0 by (7).AppendixProofsProof of Theorem 1. Put sn(h) = (1=n)PflogRh(yt�L; : : : ; yt)dyt� log h(yt�L; : : : ; yt)g: By anargument analogous to Section 3 of Gallant & Nychka (1987), sn(h) converges uniformly to�s(h; p) = � R R log h(yjx) p(yjx; �o) dy p(xj�o) dx which is minimized at h(y; x) = p(y; xj�o):By Theorem 0 of Gallant & Nychka (1987), limn!1 kfKn(y; xj~�Kn)�p(y; xj�o)k[mo�`=2];1;� =0 almost surely for any random sequence Kn that satis�es limn!1Kn = 1 almost surely,where �K = (�1; : : : ; �pK). The auxiliary model satis�es Assumptions 4 through 6 of (Gallant,1987, Chapter 7). By Theorem 4 of (Gallant, 1987, Chapter 7) we can choose NK for eachK such that n > NK implies that kfK(y; xj~�K) � fK(y; xj�oK)k[mo�`=2];1;� < K�1 becausekfK(y; xj~�K)� fK(y; xj�oK)k[mo�`=2];1;� is continuous in (~�K; �oK): We can also impose NK <NK+1: De�ne Kn = K for NK < n � NK+1. Thenlimn!1 kfKn(y; xj�oKn)� p(y; xj�o)k[mo�`=2];1;�� limn!1K�1n + limn!1 kfKn(y; xj~�Kn)� p(y; xj�o)k[mo�`=2];1;� = 0:Proof of Theorem 2. By Lemma 3, limK!1 limn!1varfpn(�̂n � �o)g = (VoL;0)�1VoL(VoL;0)�1:By Assumption 4, limL!1 VoL = limL!1 VoL;0 = Vo:Proof of Lemma 1. Put b̂ = (IoK;0)�1(MoK)a and note thata0nVoL;0 � (MoK)0(IoK;0)�1(MoK)oa= a0(VoL;0)a� 2b̂0(MoK)a+ b̂0(IoK;0)b̂= minb Z Z na0 @@� log p(yjx; �o)� b0 @@� log fK(yjx; �o)o2 p(x; yj�o) dydxProof of Lemma 2. Abbreviate as follows: g = g(x; yj�o); G = (@=@�)g(y; xj�o); gK =gK(x; yj�o); GK = (@=@�)gK(y; xj�o); p = p(x; yj�o); px = p(xj�o); � = �(x; y); �x = �(x);10



�y = �(y); and � = �0: Break the sign ambiguity as follows. There is a point (xo; yo) whereg2�� �� is positive. Theorem 1 implies that g2K�� �� must be positive at (xo; yo) for largeK: Let g and gK have the same sign at (xo; yo) for large K: Using (A + B)2 � 2A2 + 2B2;(RABdy)2 � RA2dy RB2dy; and letting B denote an upper bound that does not depend onK we have for any b thatminb 116 Z Z na0 @@� log p(yjx; �o)� b0 @@� log fK(yjx; �o)o2 p(x; yj�o) dydx= minb 14 Z Z � a0Gg�g2�+ �� � b0GKgK�g2K�+ �� + R a0Gg�dyR g2�+ ��dy � R b0GKgK�dyR g2K�+ ��dy�2p dydx� 12 Z Z � a0Gg�g2�+ �� � b0GKgK�g2K�+ ���2 + � R a0Gg�dyR g2�+ ��dy � R b0GKgK�dyR g2K�+ ��dy�2p dydx� Z Z � g�g2�+ �� � gK�g2K�+ ���2(a0G)2p dydx+ Z nZ � gR g2�ydy + � � gKR g2K�ydy + ��2�ydyonZ (a0G)2�ydyopxdx+ Z Z n gK�g2K�+ ��o2(a0G � b0GK)2p dydx+ Z n R g2K�ydy(R g2K�ydy + �)2onZ �a0G � b0GK�2�ydyopxdx� Z Z � g�g2�+ �� � gK�g2K�+ ���2(a0G)2p dydx+ Z nZ � gR g2�ydy + � � gKR g2K�ydy + ��2�ydyonZ (a0G)2�ydyopxdx+ B Z Z (a0G � b0GK)2(p + �ypx)dydx:By Assumption 3, the density (p+�ypx)=2 has a moment generating function. The polynomi-als are dense in an L2 probability space whose probability density has a moment generatingfunction (Gallant, 1980). The vector GK contains all monomials in (x; y) up to degree K:Therefore, we can choose a b for eachK such that limK!1 B R R (a0G�b0GK)2(p+�ypx)dydx =0: Theorem 1 states that limK!1 kfK(y; xj�o) � p(y; xj�o)k[mo�`=2];1;� = 0 which im-plies that limK!1 supx;y jg� � gK�j = 0: Since fg�=(g2� + ��) � gK�=(g2K� + ��)g =fg=(g2 + �) � gK=(g2K + �)g is a bounded, continuous function of (g�; gK�) we havelimK�1 jg�=(g2�+ ��)� gK�=(g2K� + ��)j = 0 pointwise in (x; y): By the Dominated Con-vergence Theorem limK!1 Z Z � g�g2�+ �� � gK�g2K�+ ���2(a0G)2p dydx = 0:11



Similarly, Theorem 1 implies that for each �xed xlimK!1 Z � gR g2�ydy + � � gKR g2K�ydy + ��2�ydy = 0:Moreover,Z � gR g2�ydy + � � gKR g2K�ydy + ��2�ydy � 2� R g2�ydy(R g2�ydy + �)2 + R g2K�ydy(R g2K�ydy + �)2�and is therefore bounded uniformly in K: By the Dominated Convergence TheoremlimK!1 Z nZ � gR g2�ydy + � � gKR g2K�ydy + ��2�ydyonZ (a0G)2�ydyopxdx = 0:Proofof Lemma 3. Let J oK = R R (@2=@�@�0) log fK(yjx; �o)p(y; xj�o) dydx and let os(1) denotea matrix or vector whose elements converge almost surely to zero and similarly op(1) forconvergence in probability. Assumptions 4 through 6 of Gallant (1987, Chapter 7) aresatis�ed by fK permitting application of Theorems 1 through 6 of Gallant (1987, Chapter7) which justi�es the following Taylor expansion of the �rst order conditions.0 = (M̂n)0(~In)�1pnm(�̂n; ~�n)= fMoK + os(1)g0fIoK;0 + os(1)g�1[pnm(�o; ~�n) + fMoK + os(1)gpn(�̂n � �o)]= (MoK)0(IoK;0)�1fpnm(�o; ~�n) + (MoK)pn(�̂n � �o)g+ op(1)= (MoK)0(IoK;0)�1fpnm(�o; �o) + (J oK)pn(~�n � �o) + (MoK)pn(�̂n � �o)g+ op(1)= (MoK)0(IoK;0)�1f(J oK)pn(~�n � �o) + (MoK)pn(�̂n � �o)g+ op(1)Application of Theorem 6 of Gallant (1987, Chapter 7) to(MoK)0(IoK;0)�1(MoK)pn(�̂n � �o) = �(MoK)0(IoK;0)�1(J oK)pn(~�n � �o)� op(1)giveslimn!1 varfpn(�̂n � �o)g= n(MoK)0(IoK;0)�1(MoK)o�1n(MoK)0(IoK;0)�1IoK(IoK;0)�1(MoK)on(MoK)0(IoK;0)�1(MoK)o�1where IoK = IoK;0 + 1X�=1IoK;� + ( 1X�=1IoK;� )0IoK;� = En @@� log fK(yt+� jxt+��1; �o)on @@� log fK(ytjxt�1; �o)o012



For a 2 <p� let b̂ be as in the proof of Lemma 1. Thena0(MoK)0(IoK;0)�1( 1X�=1IoK;� )(IoK;0)�1(MoK)a= 1X�=1Enb̂0 @@� log fK(yt+� jxt+��1; �o)onb̂0 @@� log fK(ytjxt�1; �o)o= 1X�=1E(Xt+�Xt) = 1X�=1EfXtE(Xt+� jFt)gwhere Ft is the smallest �-algebra such that the random variables fVt��g��0 as de�nedin Assumption 1 are measurable. The �rst order conditions of quasi maximum likelihoodestimation imply E(Xt+� ) = 0 so by Proposition 2 of Gallant (1987, Chapter 7) we havekE(Xt+� jFt)k2 � 2(21=p + 1)kXt+�k4On(��4r=(r�4))1=2�1=4ofor some r > 4: By Assumption 4, for some bound B and some � > 0 we have����EnXtE(Xt+� jFt)o ���� � kXtk2kE(Xt+� jFt)k2 � BO(��1��)Hence a0(MoK)0(IoK;0)�1( 1X�=1IoK;� )(IoK;0)�1(MoK)a = TX�=1E(Xt+�Xt) +O(T��)where O(T��) does not depend on K: Now limK!1 kXt � a0(@=@�) log p(ytjxt�1; �o)k2 = 0implies limK!1 jE(Xt+�Xt)j = ja0(VL;�)aj. Thus, we havelimK!1n(MoK)0(IoK;0)�1(IoK)(IoK;0)�1(MoK)o = VoL;0 + 1X�=1VoL;� + � 1X�=1VoL;��0limK!1n(MoK)0(IoK;0)�1(MoK)o = VoL;0:
13



6. Addendum: Simulation SchemesThe formulas implemented by weak2.f and stng1.f are as follows.6�1. Explicit Order 2 Weak SchemeRecursionÛt+� = Ût + 12hA(�; �) +A(Ût; �)i�+ 14 kXj=1nhBj(R+j ; �) +Bj(R�j ; �) + 2Bj(Ût; �)i�Wj+ kXr=1r 6=jhBj(Y +r ; �) +Bj(Y �r ; �)� 2Bj(Ût; �)i�Wj��1=2o+ 12 kXj=1nhBj(R+j ; �)�Bj(R�j ; �)iIjj + kXr=1r 6=jhBj(Y +r ; �)�Bj(Y �r ; �)iIrjo��1=2Supporting values � = Ût +A(Ût; �)� + kXj=1Bj(Ût; �)�WjR�j = Ût +A(Ût; �)��Bj(Ût; �)�1=2Y �j = Ût �Bj(Ût; �)�1=2Integral approximationIrj = (1=2)h�Wj�Wr + VrjiVrj = ��I(0; 12 ](Urj) + �I( 12 ;1](Urj) r < jVrj = �� r = jVrj = �Vjr r > jIndependent random variables�Wj � N(0;�) j = 1; : : : ; kUrj � U(0; 1] r = 1; : : : ; j � 1; j = 1; : : : ; k14



6�2. Explicit Order 1 Strong SchemeRecursion Ût+� = Ût +A(t; Ût; �)�+ kXj=1Bj(t; Ût; �)�Wj+ 1p� kXj=1 kXr=1hBj(t;�r; �)�Bj(t; Ût; �)iIrjSupporting values �j = Ût +A(t; Ût; �)�+Bj(t; Ût; �)p�Integral approximationIrj = (1=2)h(�Wj)2 ��i r = jIrj = (1=2)�Wr�Wj + (�C)1=2(�r�Wj � �j�Wr) r 6= j+ �2� pX̀=1 1̀ h�r`� �Wjq�=2 + �j`�� �j`� �Wrq�=2 + �r`�iC = 112 � 12�2 pX̀=1 1l2 p = 50Independent random variables�Wj � N(0;�) j = 1; : : : ; k�j � N(0; 1) j = 1; : : : ; k�j` � N(0; 1) j = 1; : : : ; k; ` = 1; : : : ; p�j` � N(0; 1) j = 1; : : : ; k; ` = 1; : : : ; pReferencesA��t-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. Rev. ofFinanc. Stud. 9, 385{426.Andersen, T. G., & Lund, J. (1996). Estimating continuous time stochastic volatilitymodels of the short term interest rate. J. Econometrics, in press.15
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