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SUMMARY

This document contains proofs and the algorithm display that were omitted from

Gallant, A. Ronald, and Jonathan R. Long (1996), “Estimating Stochastic Differ-
ential Equations Efficiently by Minimum Chi Square,” Biometrika 84, 125 ——141

In addition, definitions and statements of theorems are reproduced. The following is a
summary of the complete paper.

We propose a minimum chi-square estimator for the parameters of an ergodic system of
stochastic differential equations with partially observed state. We prove that the efficiency
of the estimator approaches that of maximum likelihood as the number of moment functions
entering the chi-square criterion increases and as the number of past observations entering
each moment function increases. The minimized criterion is asymptotically chi-squared and
can be used to test system adequacy. When a fitted system is rejected, inspecting studentized
moments suggests how the fitted system might be modified to improve the fit. The method
and diagnostic tests are applied to daily observations on the U.S. dollar to Deutschmark
exchange rate from 1977 to 1992.



1. THE ESTIMATION PROBLEM

We wish to estimate the parameter p in the system of stochastic differential equations

The parameter p has dimension p,, the state vector U, has dimension d, W, is a k-dimensional
vector of independent Wiener processes, A(-, -, p) maps [0,00) x R into R%, and B(,-, p) is
a d x k matrix comprised of the column vectors By(-,-,p), - -+, Bi(+, -, p), each of which maps

[0,00) x R? into R?. The state U; is interpreted as the solution of the integral equations

U, = U0+/ SUS,pdS—I—Z/ (s, Uy, p) dWi,

where [§ B;i(s,U,, p) dW;, denotes the Ito stochastic integral (Karatzas & Shreve, 1991).
The system is observed at equally spaced time intervals ¢t = 0,1,... and selected charac-

teristics
Ye = T(UH-L) (t: _Lv_L—I_lv"') (2)

of the state are recorded, where y; is an M-dimensional vector and L > 0 is the number of
lagged variables. Throughout data are denoted by {¢;}, simulations by {g}, and the random
variables to which they correspond by {y;}.

We assume that Uy, and hence y,, is stationary and ergodic for p € R C RP?. We further
assume that the stationary distribution of y; is absolutely continuous. Thus, for each setting
of parameter p and lag length L, there exists a time-invariant density p(y—_pr,...,yolp) such

that

ngrgoﬁzgyw,---,yt //gyL,---,yo)p(yL,---,yolp)dyL ~dyo  (3)

where {y; : t = —L,..., N} is realization of length N 4+ L + 1 from the system. This assumes
that ¢ is integrable and that either Uy is a sample from the stationary distribution of U,
or that a longer realization was observed and enough initial observations were discarded for

transients to have dissipated.

2. THE AUXILIARY MODEL

2.1. A dense class of smooth densities



Denote a partial derivative of a function f({) on R’ by

oM 9
aglh) o (a@z)f(o’

where A = (A1,...,A). Letting |A| = |A1] 4+ -+ 4 |A¢|, the Sobolev norm of f with respect

DY) = (

to a weight function pu is

Wllws = {3 [ID7OPR " (1<p <o)

[A|<m

[ £llmoo = max sup [D*f(Q)]u(c) (p = o0).

A< cent

Gallant & Nychka (1987) proposed a nonparametric density estimator for densities in a
class H of smooth densities on R* (¢ > 1) :

Given an integer mqo > /2, a bound Bg, some small ¢g > 0, some g > (/2, H consists
of those density functions A that have the form i({) = €*(() + €0@((), with ||€]lmg 2.0 < Bo,
where 110(¢) = (1 + ¢'¢)% and ¢(¢) = (2m)™/2e7¢/2. We shall take H as the parameter
space for the density estimation problem.

Writing (* = ¢ - 2", h € H has the representation A(¢) = (3)\<co ax() 2 (C) +eoo(C).
Convergence of (3-)y<0 ax()?@(¢) is with respect to the norm ||+ || jn,—¢/2),00,. Where p(¢) =
(14 ¢'¢)° for some § that satisfies £/2 < § < &y and |-| denotes the integer part.

Let Pr(¢) = Xp<k ax(? denote the truncation of DA <o ax(* above to a polynomial of
degree K on R'. Put a) = ay/[[{Px({)}2(C) d¢ + ¢0)'/? and let 6 = (0y,...,0,,.) represent

the normalized coefficients {a, : 1 < |A| < K'}. A truncated expansion of h is hi((|0) =:
{9r(¢10)}20(¢) 4 c0d(() where g (C10) = Y\ <k a\(*. These truncations are dense in H.

2:2. Regularity conditions

Define = = 21 = (y-r,..-,y-1), ¥ = vo, p(x,ylp) = p(y-1,---, volp), plzlp) =
Jpy=r,- - yolp) dyo, plylz,p) = p(x,ylp)/p(z|p), and ¢ = M(L + 1). Note that if p” de-

notes the true value of the parameters in the system (1), then p° is also the true value of p
in the density p(z,ylp) (p € R C R??) induced by the system according to (2) and (3).

ASSUMPTION 1 The process {V; : t = —L,...,00} obtained by sampling the system (1)
at times t = 0,1,... and putting Vi_, = Uy is strong mizving of size —4r/(r — 4) for
some r > 4. The conditional density p(y|z,p) of plx,ylp) in (3) is defined on the clo-
sure R° of an open ball R° that contains p°. The true value p° is an isolated min-

imum of 3(p) = [[logp(ylz,p)p(x,ylp®) dydx and the matriz [[{(0/Ip)logp(y|z,p®)}
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{(9/9p)log p(ylz, p°) Y p(z,y|p°) dydx is nonsingular. The derivatives (9/dp;)logp(y|z, p)
and (0*/9p;0p;)log p(y|z,p) are continuous in p over R° and are dominated by a function
d(x,y) that has finite r-th moment with respect to p(x,y|p°).

Assumption 1 is the specialization to the present situation of Assumptions 1 to 6 of
Gallant (1987, Chapter 7), which are standard regularity conditions for estimation of the
parameters of a dynamic model by quasi maximum likelihood; see also Potscher & Prucha
(1991a, 1991b). Because the process {V;} is strong mixing, so is {(xs v:)}. Ergodicity of
{(x+,y+)} is then a conclusion of the strong law of large numbers (Gallant, 1987, Chapter 7,
Theorem 1).

ASSUMPTION 2 For some integer mo > /2, some bound Bg, some small ¢g > 0, and some
do > max(2,4/2), p(x,y|p®) has the form p(x,y|p?) = €*(x,y)+ecop(x, y) with ||€]lmo 2,40 < Bo,
where po(z,y) = (1 + 2’z + y'y)% and d(x,y) = (2m) "/ 2e="=/20VV2 " Similarly for p(zx|p°).

Assumption 2 is sufficient to imply the Gallant-Nychka result stated in Subsection 2-1
for ( = (x,y) and h°(() = p(a,y|p°). Thus, p(x,y|p°) has the representation

pa,ylp°) {9(z,ylp)Y2o(x,y) + cod(z,y) (4)
gClp) = D0 anl™

[A]<eo

We shall use the truncated expansion

fi(z,yl0) = {gr(z.y|0)}o(z.y) + cod(z,y) (5)
gr(C10) = Y @

M<K
described in Subsection 2-1 as the auxiliary model fx for the theoretical results in Section 4.
For applications we shall make some algebraic modifications as described in Subsection 2-3
below.
Let § = (0;,...,0,,) denote the coefficients given by the Gallant-Nychka construction.
If p(x,y|p°) is not itself a truncated expansion, then these differ from the coefficients 6° =

(09,...,07 ) that solve the moment equations mx(p°,0) = 0, where

mic(p”,0) = | / log{ fx(yle, 0)} plx, y|p°) dyda,
fic(yle,0) = fic(w, 910} fic(210),  fic(xl0) = [ fre(,yl0)dy
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Nonetheless, the coefficients #° will serve as well as the coefficients § as stated in Theorem 1
below. Note that here, and throughout, fx(x|0) is not the truncated expansion of p(z|p?)
but rather the integral of the truncated expansion of p(x, y|p°).

THEOREM 1 Under Assumptions 1 and 2

Jim | fi (y, 07) = plys @) mo-t/2) 000 = 0.

With respect to the representation (4), the partial derivative of log p(z, y|p) is

d (2, ylp)
1 7 —
9 og p(z, ylp) { @ vlp) +6} 5 ylp).

ASSUMPTION 3 Both p(x,y|p°) and p(x|p®) possess moment generating functions, and

/] {a’a%g(x,y|p°>}2{p<x,y|po> + 6(y)p(x|p?) pdydz < oo

for every a € RPe.

Assumptions 1 and 2 are technical conditions that imply standard properties of quasi
maximum likelihood estimators and some intuitively plausible properties of estimators based
on Hermite expansions. For stochastic differential equations where p(x,y|p) is known in
closed form, they can often be verified at sight. For instance, the Ornstein-Uhlenbeck process
dUy = (p1 + p2Up)dt 4+ psdW, generates a Gaussian density for observations; the process
dUy = (p1 + p2Uy)dt + pg(Ut)l/Qth generates a gamma marginal and non-central chi-square
conditional. Restrictions on the parameters p; of these two processes that imply ergodicity
are given in Ait-Sahalia (1996). Assumption 3 is central because it allows approximation of
the score (0/0dp)log p(x,y|p°) by a polynomial (Gallant, 1980).

When the entire state vector U, is not observed {y,} may not be Markov. In this case,

the asymptotic variance of the quasi maximum likelihood estimator of p based upon L lags

is (Vio) ' (VE)(Vio)™", where

V[O/ = V[O/,O + Z V[O/,T + (Z Vz,ﬂ')/7 (6)
T=1 T=1
0 0 /
Vi, = E{a—p10gp(y7|x7—1,p°)}{a—p10gp(yo|x—1,,0°)}, (7)

EW) = /---/W(y—L,---,yT)p(y—L,---,yTIpo)dy—L---dyT;
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and the asymptotic variance of the maximum likelihood estimator is (V?)~!, where

!
) 2 lim — ZE{ 1ng Ye|Yos -« -y Yio1, p° }{ logp yt|y07---7yt_1,,o°)} . (®)
E(W = /”'/Wy07"'7yt)p(y07‘"7yt|,00)dy0---dyt

(Gallant, 1987, Chapter 7, Theorem 6). Define
!
M = [ [{ 108 fctule. 0} {2 logp(yle, )} (e ) dyd, (9)

Tio = //{ log fx(y|z,0° }{ log fx(y|z,0° )} pla,y|p®) dydx. (10)
We assume that an analysis based on L lags is valid for large L.

ASSUMPTION 4 We require
lim Vi, = hm Vi =V

L—oo

In addition, (;’(6/60) log fx(y|x,0°) with b = (Z% o) (M3 )a, which is the L, projection
a'(0/0p)log p(y|x, p°) onto the linear span of (0/00)log fx (y|x,0°), has fourth moment
bounded uniformly in K for each a € RP».

The last requirement is plausible because a’(9/dp) log p(y|x, p°) has finite fourth moment
under the assumptions in place. Since Lemma 2 implies a uniform bound on the second
moment, the bound on the fourth moment can be relaxed by imposing a more stringent
mixing requirement in Assumption 1. See Hall & Heyde (1980, p. 20) and the proof of

Lemma 3.
2:3. A form suitable for applications

There is no need to retain the term eyp(¢) in the truncated expansion hx((|0) =
{gr(C10)}2b(C) + e0d(C) provided that those log{gx (¢]0)}* that become too small to have
machine representation during an optimization of the log likelihood are set to the smallest
number that the machine can represent. In tests, optimizations using this strategy have
been more efficient and stable than methods that retained the term ey¢(¢). With the term
deleted, a change of location and scale prior to conditioning, and some rearrangement of

polynomial coefficients, the conditional density can be put in the form

[P{R™ 'y — poey)s e PR (Y — )}
| det(R)|V/2 [{P(z, 1) }20(2) dz ’

5

hK(yt|$t—170) =




where @41 = (Ys—py .-+, Yt-1),

P,y = bo + By, (11)
K. K,

Plz,2) =YY" agar’ 2", (12)
a=0 =0

and R is an upper triangular matrix. We refer to x, as the mean function and to P?(z, x)d(2)
as the Hermite polynomial.
The ability of the model to approximate conditionally heteroscedastic data is much im-

proved by replacing R above by R where

Tg—19

VeCh(Rl’t—l) = pPo + P|xl‘—1 — Hzy_o |7 (13)

with vech(R) denoting a vector of length M (M + 1)/2 containing the elements of the upper
triangle of R, and |x| denoting elementwise absolute value. We refer to R, as the variance

function. This yields the auxiliary model used in our applications:

[PARS (e — pray )y v PR (9 — pre )}
| det( B, )2 [{P (2, 00-1) }20(2) dz '

The vector 6 contains the coefficients A = (ag,) of the polynomial (12), the coefficients

f(yt|xt—170) =

(14)

(bo, B) of the mean function (11), and the coefficients (po, P) of the variance function(13).
To achieve identification, the coefficient ag g is set to 1.

There is no need for the number of lagged values of y; in the polynomial P(z,z), the
mean function ., or the variance function R, to be the same. Accordingly, denote them
by L,, L,, and L,, respectively. This can by accomplished within the notational scheme
above by putting L = max(L,, L,, L, + L,) and setting certain elements of A, (by, B), and
(po, P) to zero. Also, when M is large, coefficients ag, corresponding to monomials z* that
represent high order interactions can be set to zero with little effect on the adequacy of
approximations. Let I, = 0 indicate that no interaction coefficients are set to zero, I, = 1
indicate that coefficients corresponding to interactions z* of order larger than K, — 1 are set
to zero, and so on; similarly for 2 and [,. We also find that setting to zero the elements
of P in (13) that correspond to the off-diagonal elements of R, can improve the stability of

optimizations with little effect on the adequacy of approximations.

3. THE MINIMUM CHI-SQUARE ESTIMATOR



The minimum chi-square estimator p,, that we propose is computed as follows. Use the

auxiliary model

fdye-r, - -1, 0) (0 €©CRY) (15)
given by (14) and the data {g; : t = —L,...,n} to compute the maximum likelihood estimate
~ 1 & . .
0, = argmax — > _log{f(§:|Je-1,-- - Je-1,0)} (16)
€ n =0

and the corresponding estimate of the information matrix

~ "0 . L 0 . Y
I, := 5;{%1% F@elie-rs- - Bims 0) H{ 55 log F(Gnlers - Gemr )} (17)

Define

// log{ f(yoly-r,- - y-1,0)} p(y—r, .- yolp) dy_p---dyo  (18)

which, for given p € R C RP7, is computed as an average

1 Mo

m(p,0) = _Zae log{ f(Jelfie—r-- - -, Je-1,0)} (19)

over a long simulation {g;} generated from the system (1) by means of simulation methods.

The proposed minimum chi-square estimator is

pr = argmin m'(p, 0,)(Z) ™ m(p, 0n). (20)

Under regularity conditions implied by the restrictions placed on p(y_r,...,yolp) (p €

R C RPr) by Assumption 1, Gallant & Tauchen (1996) have investigated the asymptotics

of p, for auxiliary models f(y_r,...,yolf) (8 € © C RP¢) that satisfy standard regularity

conditions for quasi maximum likelihood estimation such as Assumptions 1 to 6 of Gallant

(1987, Chapter 7), or those listed in Potscher & Prucha (1991a, 1991b), which are similar to

our Assumption 1. Their results are as follows. If #° is an isolated solution of the equations

m(p°,0) = 0 and p, < pg, then p, converges almost surely to p° and nz(p, — p°) converges
in distribution to N{O, {(MO)’(IO)_l(MO)}_l}, where

/ /{ log f(yola—1,0 }{ log f(yolz—1, )}/p(y—L,---,yo,I/J‘O)dy—L“-dyo,



t-1 = (Yoo y-1), M° = M(p°,6°), and M(p,0) = (9/9p")ym(p,0). Further,
lim, .. M, = M° and lim,_,.. Z, = Z° almost surely, where M, = M(pn, én)
Under the null hypothesis that the system (1) is the correct model,

Lo = n (. 0,)(Z) " (0, 0,) (21)

is asymptotically chi-squared on py — p, degrees freedom. Under the null hypothesis that
h(p®) = 0, where h maps R into R?,

Lo = n{m (7, 0.) G 57, 8) = 10/ (s B) (E) (s B)

is asymptotically chi-squared on ¢ degrees freedom where

P = ar%mm m'(p,0,)(Z,) " 'm(p, 0,,).

(p)=0

Because N[0,7° — (M°){(M°)(Z°)~*(M°)}=(M°)| is the limiting distribution of
n%m(ﬁn,én), when Lg exceeds the chi-square critical point inspection of the t-ratios T, =
Sotndm(pa,0.), where S, = (diaglZ, — (V) {(VE)(Z) = (V)11 (V,)7) "7, can suggest
reasons for failure. Different elements of the score correspond to different characteristics of

the data. For this purpose, the quasi-t-ratios
T, = {(diag Z,)"/*} ~'n=m(pn, 0,), (22)

which are under-estimates, are usually adequate and are cheaper to compute because they

avoid computation of Mn, which must be done numerically.

4. EFFICIENCY

In this section we state our main result, Theorem 2, which is established by means of

three lemmas that are stated here. Proofs are in the Appendix.
THEOREM 2 Assumptions 1, 2, 3, and 4 tmply

lim lim lim var{\/n(p, — p°)} = (V°)7!

L—o00o K—oo n—o0

where (V°)~! is the asymptotic variance of the mazimum likelihood estimator of p given by

(8).



The implication of this result is that the asymptotic variance of the proposed minimum
chi-square estimator (20) can be made as close as desired to the asymptotic variance of the
maximum likelihood estimator by taking I and K suitably large. The result is general in
that it applies to any sequence {V;};2_; and density p(x,y|p) that satisfy Assumptions 1
through 4. That is, the sequence {V;};2_; does not have to be generated by a stochastic
differential equation.

In the remainder of this section, notation is as in Subsection 2-2: p(z,y|p) = p(y-1, ...,
volp), p(xlp) = S p(y-L,-- - yolp)dyo, v = 2y = (y-,---,y-1), ¥ = o, [ (y|z,0) is given
by (5), My is given by (9), T} o is given by (10), ete.

Our first lemma states that if the scores of p(y|z, p°) are in the linear span of the scores
of fx(ylr,0°), then (M3 ) (I} o)~ (M3) converges to V7 ; as given by (7).

LEMMA 1
lim (MA) (I;(,o)_l(MIO() = Vz,o

K—oo

if and only if

lim mm//{a —logp yle,p?) =0 —log fr(y |:1;,(9°)}2p(:1;,y|p°) dydr =0

K—oo

for every a € RPe.

The second lemma states that the scores of p(y|x, p°) are in the linear span of the scores
of fK(y|x7 00)‘

LEMMA 2 Assumptions 1, 2, and 3 imply

0 o
lim mm//{a 5, e plule. ) = V5108 ficule, 0 )V (e ylp?) dyde = 0

K—oo

for every a € RPe.

The third lemma is of some interest in its own right because it states that the asymptotic
variance of the proposed minimum chi-square estimator can be made as close as desired to
the asymptotic variance (V7 o)~ (V7)(V7 )" of the quasi maximum likelihood estimator of
p based on L lags by taking K suitably large. Thus, if the process {y,}{2_; is Markov, then

Lemma 3, itself, implies efficiency for large K.



LEMMA 3 Assumptions 1, 2, 3, and 4 imply

lim lim vary/n(p, — p°)} = (Vio) ™ (VI)(Vio) ™

K—o00 n—o0

where Vi is given by (6) and Vi o by (7).

APPENDIX
Proofs

Proofof Theorem 1. Put s,(h) = (1/n)>{log[h(yi-r,...,y:)dy: —1og h(yi—r,...,y:)}. By an
argument analogous to Section 3 of Gallant & Nychka (1987), s, (h) converges uniformly to

s(h,p) = = [[log h(y|z) p(ylz, p°) dy p(x|p®) dw which is minimized at h(y,z) = p(y, z[p?).
By Theorem 0 of Gallant & Nychka (1987), lim,, o || fx, (v, :1;|(§Kn) — (Y, 20 pmo—t/21,00 =
0 almost surely for any random sequence K, that satisfies lim,_,., K,, = oo almost surely,
where 0 = (61,...,0,,.). The auxiliary model satisfies Assumptions 4 through 6 of (Gallant,
1987, Chapter 7). By Theorem 4 of (Gallant, 1987, Chapter 7) we can choose Nk for each
K such that n > Nk implies that HfK(y,x|§K) — [y, 2105 ) |pno—t/2],00n < K7 because
| fx (y, :1;|(§K) — [ (Y, 2|03 [mo—t/2),00, 18 continuous in (éK, %.). We can also impose Ni <

Ng1. Define K, = K for Ny <n < Ng4y. Then

dim || fre, (y, 210%,) — p(y, 2]p°) | tmo—e/21,00 0
< lim K Tim || fx, (9, 2105,) = p(ys 210 [fma—t/2) 00,0 = 0.
Proof of Theorem 2. By Lemma 3, limg o0 lim, oo var{y/n(p, — p°)} = (Vz70)_1Vz(Vz70)_1

By Assumption 4, limy, o, V] = limy, . V] o = V°.

Proof of Lemma 1. Put b= (Z} o)~ (Mg )a and note that

' {V5 o — (M7) (T3 o)~ (M) ba
= d(Vig)a— 2B'<M;1>a + V(T3 )b

0 2
= mm//{ ——log p(ylz,p”) =¥/ %bgff«'(ylxﬁ(’)} p(z,ylp?) dydx

Proof of Lemma 2. Abbreviate as follows: g = g(x,y|p®), G = (9/dp)g(y,x|p°), gx =
gr (2, y10°), Gr = (9/00)grc(y, x|0°), p = p(,ylp°), pe = ple|p?), & = ¢, y), ¢ = (),
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oy = ¢(y), and € = ¢y. Break the sign ambiguity as follows. There is a point (z°,y°) where
g*¢ — € is positive. Theorem 1 implies that g7.¢ — e must be positive at (x°,y°) for large
K. Let g and gk have the same sign at (2°,y°) for large K. Using (A + B)? < 2A4% 4+ 2B?
(JABdy)* < [A%dy [ B*dy, and letting B denote an upper bound that does not depend on

K we have for any b that

2
mm—//{a—logp yla, p°) —b—logflx( |$7‘90)} pla, ylp°) dyda

— mint / / a'Ggp  VGrgrp | [d'Ggody | b’GKqubdy)? dydz
b4 Po+ed  gidt+ed  [FPo+eddy [ ghd+eddy

l// a'Ggo . b/GKgKQb)Q ( J d'Gagody . fb/GKgKﬁbdy)?p dydz

2 2¢ +ed gid+ed [g*¢+eddy [ gid+ epdy

< // 2¢-|-6qb g},?fqb)z(a@)?pdydx
9K 2 )
" /{/ fgquydy + e B fg%(qb:dy n 6) Qbydy}{/(a G) Qbydy}pxdx

gxqb / / 2
+ //{gm]+ eqb} (a'G — ¥ Gy )?p dyd

fg(qbydy ' , 2
* /{ fg% quydy + 6)2}{/(a G—b GK) Qbydy}pxdl'

(qb 2, w2
// 2¢+ c¢ g?(LZ;Jr eqb) (d'G)p dyda

U Gt Taodrd) ot @0 ond}pede
+B / / (d'G = 0Gr)*(p+ ¢yps)dyde.

<

IA

By Assumption 3, the density (p+¢,ps)/2 has a moment generating function. The polynomi-
als are dense in an Ly probability space whose probability density has a moment generating
function (Gallant, 1980). The vector Gk contains all monomials in (x,y) up to degree K.
Therefore, we can choose a b for each K such that limg_.. B [ [(¢/G—0 Gk )*(p+yp.)dydr =
0. Theorem 1 states that limg_,o || fx(y, 2]0°) — p(y, z|p°)limo-t/2],00,e = 0 which im-
plies that limy . sup,,9¢ — gxd| = 0. Since {gd/(¢°¢ + €8) — grd/(9k ¢ + €d)} =
{9/(¢* + €) — gr /(g3 + €)} is a bounded, continuous function of (g¢,grx®) we have
limg o |90/ (%0 + €d) — g @/ (g%-¢ + €d)| = 0 pointwise in (z,y). By the Dominated Con-

vergence Theorem

) IK ¢ 20 12 _
1}5%0// 2¢ + b ghd+ eqb) (¢G)pdyde = 0.
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Similarly, Theorem 1 implies that for each fixed x

. g 9K 2
lim — o, dy = 0.
Koo (f92¢ydy +e fg%(qbydy + 6) Y
Moreover,
/( g B 9K )2¢ dy < 2( [ 9*¢ydy [ gk ¢ydy )
[ oydy+c [ gidydy+ e o ([ g*dydy +€)* ([ gicdydy + €)?

and is therefore bounded uniformly in K. By the Dominated Convergence Theorem

. g 9K 2 12
b U Gatre ™ Tty HH [ (€ ontlpudz =0

Proofof Lemma 3. Let Jg = [[(0*/0000")1og fr(y|z,0°)p(y,x|p°) dydx and let os(1) denote
a matrix or vector whose elements converge almost surely to zero and similarly o,(1) for
convergence in probability. Assumptions 4 through 6 of Gallant (1987, Chapter 7) are
satisfied by fx permitting application of Theorems 1 through 6 of Gallant (1987, Chapter

7) which justifies the following Taylor expansion of the first order conditions.

0 = (VL)L) Vum(pa.d,)

= (M + 0D} {Tic + 01} W m(p,0,) + {M5; + 0u(1)}/n(pn — p°)]

= (M) (Tieo) ™ v/ m(p®.0.) + (Mg )/ — 0°)} + 0,(1)

= (M) (Tieo) ™ H/mm(p® 07) + (TR0, — 0°) + (M) /n(pn — 0°)} + 0,(1)

= (M) (Tieo) ™ (TR0 — 0°) + (Mi)/n(pn — 0°)} + 0,(1)
Application of Theorem 6 of Gallant (1987, Chapter 7) to

(M) (T )™ (M)l — p°) = —(M3) (Zie )™ (TR (B, — %) — 0,(1)

gives
Jim var{\/n(p, —p°)}

= {(M) (T3 0) (M)} (MR (i) Tie (i) ™ (M) H{ MR Y (Tieo) M (M50
where

I]O( = IIO(,O + Z IIO(,T + (Z IIO(,T)/
T7=1 =1

3, 0 !

Iy, = E{% log fr(Yirr|Tigr1, 90)}{% log fr(ye|zi-1, ‘90)}

12



For a € R¥* let b be as in the proof of Lemma 1. Then

/(M) (Zg o)™ (O Tie ) Tic o)™ (M )a

=1

— E{b log i (yesr|ier—1,0°) }{b—logmytm 10°)}

T= 1

— Z_: E(X, Xp) = Z_:E{XtE(XtJrTV:t)}

where F; is the smallest o-algebra such that the random variables {V;_;};>¢ as defined
in Assumption 1 are measurable. The first order conditions of quasi maximum likelihood

estimation imply F(X:y,) = 0 so by Proposition 2 of Gallant (1987, Chapter 7) we have
|2 (el Flll2 < 20277 + 1) Xeg 1O (770701211}

for some r > 4. By Assumption 4, for some bound B and some ¢ > 0 we have
| E{XEXr | F ) | £ Il B |7 2 < BOGY)

Hence

T
' (Mg ) (Zi ) Z fe ) Tico)H(Mi)a =3 B(Xpyr Xo) + O(T7)

7=1
where O(T7%) does not depend on K. Now lim_. || X; — a'(0/0p) log p(ys|zi_1,p°)||2 = 0
implies limg o0 | F(Xi4- Xt)| = |'(Vi,7)a|. Thus, we have

K—oo

lim {(M) (T o)™ (Zi) (Zic o) (M)} = Vig + 3 Vi, + (Vi)
T=1 T=1

lim {(M3)(Zi0) ™ (M5)} = Vi

K—oo

13



6. ADDENDUM: SIMULATION SCHEMES

The formulas implemented by weak2.f and stngl.f are as follows.

6-1. Explicit Order 2 Weak Scheme

Recursion

A 1 A
Uipn = Ui+ _{A(Taﬂ) + A(Utvp)}A

2
1 & ~ A
+ 7 Z;{ {B](R?, p) + Bi(R;,p) + 2B;(Us, p)}AW]
o
k
+ Y [BiY,T p) + Bi(Y, ) = 2B;(U, p) | AW, AT
oy
1 k k
+ 3 Z;{[Bj(l%j’,p) — Bi(Ry ., p)| L+ 3o [Bi(Y,F, p) = Bi(Y7 . p)| Ly pATY?
J= r=1

r#3

k
T = Uit AU p)A+ ) Bi(Ur, p) AW

i=1

Ri = Ut—l—A(Uhp)AiB}(Uhp)AI/z
YE = U+ Bj(U, p)AY?

L = (1/2)[AW,AW, + V]

Vi, = —A r=J
Vij = =V r>

Independent random variables

AW, ~ N(0,A)  j=1,...,k

U, ~ U(0,1] r=1,...,5—1, j=1,...k

14



6-2. FExplicit Order 1 Strong Scheme

Recursion

k
Uisn = Ui + A(tv UtaP)A + Z Bj(ta UtaP)AWJ
=1

1

k
e

M»

[ (1, p) — Eﬁ(al%,pﬂfm

Il
—

r

Supporting values

A

T] = Ut—l—A(tvﬁtvlo)A—l_Bj(tvUtvp)\/Z

Integral approximation

L = (1/2)[(AW;)? - A] r=j
L = (1/2)AW, AW, + (AC) (1, AW, — 1, AW,) r#j
A1 AW; AW,
—I_%;Z[QZ(\/T/Q U]z) é}z(\/A—/Q—I-mz”
=1

Independent random variables

AW; ~ N(0,A) j=1,....k
i ~ N(0,1) j=1,....k
nie ~ N(0,1) j=1,....k (=1,....p
Ce ~ N(0,1) j=1,....k (=1,....p
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