A Bayesian Approach to Estimation of Dynamic Models with Small and Large Number of Heterogeneous Players and Latent Serially Correlated States

A. Ronald Gallant Penn State University

Han Hong Stanford University

Ahmed Khwaja Yale University

Paper: http://www.aronaldg.org/papers/socc.pdf Appendix: http://www.aronaldg.org/papers/socc_web.pdf Slides: http://www.aronaldg.org/papers/soccclr.pdf

History

Application: Gallant, A. Ronald, Han Hong, and Ahmed Khawaja (2016), "The Dynamic Spillovers of Entry: An Application to the Generic Drug Industry," *Management Science*, forthcoming.

Theory: This paper.

Outline

- Overview
 - ▷ Econometric Problem
 - Econometric Approach
 - ▷ Results
- Examples
- Econometrics
- Simulation

Econometric Problem

- Estimate a dynamic game
 - ▷ with partially observed state
 - ▷ with serially correlated state
 - ▷ with (possibly) endogenous state
 - ▷ with (possibly) complete information
 - \triangleright with continuous or discrete choice
 - ▷ with (mixed) continuous or discrete state
- Applications:
 - Entry and exit from industry, technology adoption, technology upgrades, introduction of new products, discontinuation of old products, relocation decisions, etc.

Econometric Approach

- Bayesian econometrics
 - ▷ accommodates a nondifferentiable, nonlinear likelihood
 - ▷ easy to parallelize
 - ▷ allows the use of prior information
- Develop a general solution algorithm
 - ▷ computes pure strategy subgame perfect Markov equilibria
 - ▷ using a locally linear value function
- Use sequential importance sampling (particle filter)
 - ▷ to integrate unobserved variables out of the likelihood
 - ▷ to estimate ex-post trajectory of unobserved variables

Results

- Method is exact
 - ▷ Stationary distribution of MCMC chain is the posterior.
 - ▷ Because we prove the computed likelihood is unbiased.
 - ▷ Efficient, number of required particles is small.
- Regularity conditions minimal.

Outline

- Overview
- Examples
 - ▷ An entry game, three players
 - * Equilibrium: Markov sub-game perfect
 - ▷ Monopolistic competition, twenty players
 - * Equilibrium: oblivious
- Abstraction
- Econometrics
- Simulation

		Dominant Firms $(enter = 1, not enter = 0)$					
Drug / Active Ingredient	ANDA Date	Mylan	Novopharm	Lemmon	Geneva	Total Entrants	Revenue (\$'000s)
Sulindac	03 Apr. 90	1	0	1	1	7	189010
Erythromycin Stearate	15 May 90	Ō	Õ	0	0	1	13997
Atenolol	31 May 90	1	Õ	Õ	Õ	4	69802
Nifedipine	04 Jul. 90	Ō	ĩ	Õ	Õ	5	302983
Minocycline Hydrochloride	14 Aug. 90	Õ	0	Õ	Õ	3	55491
Methotrexate Sodium	15 Oct. 90	1	Õ	Õ	Õ	3	24848
Pyridostigmine Bromide	27 Nov. 90	0	õ	ŏ	Ő	1	2113
Estropipate	27 Feb. 91	Ő	õ	ŏ	Ő	2	6820
Loperamide Hydrochloride	30 Aug. 91	1	ĩ	ĩ	1	5	31713
Phendimetrazine	30 Oct. 91	Ō	0	0	Ō	1	1269
Tolmetin Sodium	27 Nov 91	1	1	1	1	7	59108
Clemastine Fumarate	31 Ian 92	0	0	1	0	1	9077
Cinovacin	28 Feb 02	0	0	0	0	1	6281
Diltiszem Hydrochloride	20 Peb. 92 30 Mar 02	1	1	0	0	5	430125
Nortriptyline Hydrochloride	30 Mar. 92	1	0	0	1	3	187683
Triamterene	30 Apr 02	0	0	0	1	2	22002
Pirovicam	20 May 02	1	1	1	0	<u><u></u></u>	309756
Criseofulvin Ultramicrocrystalline	20 Jun 02	0	0	0	0	1	11797
Purozinomido	30 Jun 02	0	0	0	0	1	306
Diffunical	30 Juli. 92 31 Jul 02	0	0	1	0	1	06488
Carbidopa	28 Aug 02	0	0	1	0	4	117933
Dindolol	20 Aug. 92	1	1	1	1	4 7	27649
Kataprofen	22 Dec. 02	1	1	0	0	2	107040
Comfibrozil	22 Dec. 92	1	0	1	0	5	220520
Bongonatata	20 Jan. 93	1	0	1	0	1	2507
Mathadana Hudrochlarida	15 Apr 03	0	0	0	0	1	1858
Methagolomido	20 Jun 02	0	0	0	1	1	4702
Alprozolom	10 Oct 02	1	1	0	1	37	4792 614502
Nadalal	19 Oct. 93	1	1	0	0	2	195270
Levenengestrol	12 Dec. 93	1	0	0	0	2	120019
Levonorgestrei Matampalal Tantnata	15 Dec. 95	1	1	0	1	1	47030
Netoproioi Tartrate	21 Dec. 95	1	1	1	1	9	255025
Naproxen Namenoven Calliner	21 Dec. 95	1	1	1	1	07	400191
Naproxen Sodium	21 Dec. 95	1	1	1	1	1	104//1
Guanabenz Acetate	26 red. 94	0	0	0	0	2	16120
Clini-id	25 Mar. 94	1	0	0	0	2	1282
Glipizide	10 May 94	1	0	0	0	1	189717
Cimetidine	17 May 94	1	1	0	0	3	347218
	20 Jun. 94	1	0	0	0	1	100529
Suitadiazine	29 Jul. 94	0	U	0	0	1	(2
Hydroxychloroquine Sulfate	30 Sep. 94	0	0	0	0	1	8492
Mean		0.45	0.28	0.25	0.25	3.3	126901

Table 1. Generic pharmaceuticals, Scott-Morton (1999)

Entry Game Characteristics

- Costs
 - ▷ Serially correlated.
 - ▷ Partially observed.
- Endogenous state
 - ▷ Entry changes future costs.
 - * Capacity constraint: increased costs.
 - * Learning: decreased costs.
 - ▷ Induces heterogeneity.
- Complete information
 - ▷ Firms know each other's revenue and costs.
- Simultaneous move dynamic game.

An Entry Game I

- There are i = 1, ..., I, firms that are identical ex ante.
- Firms maximize PDV of profits over t, \ldots, ∞
- Each period t a market opens and firms make entry decisions:
 - \triangleright If enter $A_{i,t} = 1$, else $A_{i,t} = 0$.
- Number of firms in the market at time t, is $N_t = \sum_{i=1}^{I} A_{i,t}$.

An Entry Game II

- Gross revenue R_t is exogenously determined.
- A firm's payoff is $R_t/N_t C_{i,t}$ where $C_{i,t}$ is "cost".
- Costs are endogenous to past entry decisions:
 - $\triangleright c_{i,t} = c_{i,u,t} + c_{i,k,t}$ (lower case denotes logs)

$$\triangleright c_{i,u,t} = \mu_c + \rho_c \left(c_{i,u,t-1} - \mu_c \right) + \sigma_c e_{it}$$

$$\triangleright c_{i,k,t} = \rho_a c_{i,k,t-1} + \kappa_a A_{i,t-1}$$

Source of the dynamics

• Coordination game: If multiple equilibria (rare), the lowest cost firms are the entrants.

Solution I: Bellman Equation

For each player

$$V_{i}(C_{it}, C_{-i,t}, R_{t})$$

$$= A_{it}^{E} (R_{t}/N_{t}^{E} - C_{it})$$

$$+ \beta \mathcal{E} \Big[V_{i}(C_{i,t+1}, C_{-i,t+1}, R_{t+1}) | A_{i,t}^{E}, A_{-i,t}^{E}, C_{i,t}, C_{-i,t}, R_{t} \Big]$$

The value function for all players is

$$V(C_t, R_t) = \left(V_1(C_{1t}, C_{-1t}, R_t), \dots, V_I(C_{It}, C_{-It}, R_t) \right)$$

 $-V(c_t, r_t)$ is approximated by a local linear function.

- The integral is computed by Gauss-Hermite quadrature.

Solution II: Subgame Perfect Markov Equilibrium

Equilibrium condition (Nash)

$$V_i(A_{i,t}^E, A_{-i,t}^E, C_{i,t}, C_{-i,t}, R_t) \ge V_i(A_{i,t}, A_{-i,t}^E, C_{i,t}, C_{-i,t}, R_t) \quad \forall i, t.$$

where

$$V_{i}(A_{i,t}, A_{-i,t}, C_{i,t}, C_{-i,t}, R_{t})$$

$$= A_{it} (R_{t}/N_{t} - C_{it})$$

$$+ \beta \mathcal{E} \Big[V_{i}(A_{i,t+1}^{E}, A_{-i,t+1}^{E}, C_{i,t+1}, C_{-i,t+1}, R_{t+1}) | A_{i,t}, A_{-i,t}, C_{i,t}, R_{t} \Big]$$

is the choice-specific payoff function.

Complete information: C_t , R_t known implies A_t^E known whence

$$V_i(A_{i,t+1}^E, A_{-i,t+1}^E, C_{i,t+1}, C_{-i,t+1}, R_{t+1}) = V_i(C_{i,t+1}, C_{-i,t+1}, R_{t+1})$$

Solution III: Local Linear Approximation

- The value function V is approximated as follows:
 - ▷ Define a coarse grid on $s = (c_{u,1}, \ldots, c_{u,I}, r, c_{k,1}, \ldots, c_{k,I})$. Each hypercube of the grid is indexed its centroid K, called its key. The local linear approximation over the Kth hypercube is $V_K(s) = b_K + (B_K)s$.
 - ▷ For a three player game V_K is 3×1 , b_K is 3×1 , B_K is 3×7 , and s is 7×1 .
- The local approximator is determined at key K by (1) solving the game at a set {s_j} of states within the Kth hypercube, (2) computing {V_j = V(s_j)} using the Bellman equation, and (3) computing the coefficients b_K and B_K by regressing {V_j} on {s_j}. Continue until b_K and B_K stabilize.
 - ▷ Usually only 6 hypercubes are visited.

An Entry Game – Summary

• Log revenue: r_t

• Log costs:
$$c_{i,t} = c_{i,u,t} + c_{i,k,t}$$
 $i = 1, ..., I$

$$\triangleright c_{i,u,t} = \mu_c + \rho_c \left(c_{i,u,t-1} - \mu_c \right) + \sigma_c e_{it}$$
$$\triangleright c_{i,k,t} = \rho_a c_{i,k,t-1} + \kappa_a A_{i,t-1}$$

- Parameters: $\theta = (\mu_c, \rho_c, \sigma_c, \mu_r, \sigma_r, \rho_a, \kappa_a, \beta, p_a)$
- Solution: $A_t^E = S(c_{u,t}, c_{k,t}, r_t, \theta)$
 - \triangleright A deterministic function.

Outcome Uncertainty

• Error density

$$\triangleright \quad p(A_t \mid A_t^E, \theta) = \prod_{i=1}^{I} (p_a)^{\delta(A_{it} = A_{it}^E)} (1 - p_a)^{1 - \delta(A_{it} = A_{it}^E)}$$

$$\triangleright \quad A_t^E = S(c_{u,t}, c_{k,t}, r_t, \theta)$$

- Equilibrium
 - ▷ Firms take outcome uncertainty into account.
 - ▷ Bellman equations modified to include error density.

Abstraction

The state vector is

$$x_t = (x_{1t}, x_{2t}),$$
 (1)

where x_{1t} is not observed and x_{2t} is observed. The observation (or measurement) density is

$$p(a_t | x_t, \theta). \tag{2}$$

The transition density is

$$p(x_t | a_{t-1}, x_{t-1}, \theta).$$
 (3)

Its marginal is

$$p(x_{1t}|a_{t-1}, x_{t-1}, \theta).$$
 (4)

The stationary density is

$$p(x_{1t} \mid \theta). \tag{5}$$

Assumptions

- We can draw from $p(x_{1t} | a_{t-1}, x_{t-1}, \theta)$ and $p(x_{1t} | \theta)$.
 - ▷ Can draw a sample from $p(x_{1t} | \theta)$ by simulating the game, and discarding a_t and x_{2t} .
 - ▷ Can draw from $p(x_{1,t} | a_{t-1}, x_{t-1}, \theta)$ by drawing from $p(x_t | a_{t-1}, x_{t-1}, \theta)$ and discarding x_{2t} .
- There is an analytic expression or algorithm to compute $p(a_t | x_t, \theta)$, $p(x_t | a_{t-1}, x_{t-1}, \theta)$, and $p(x_{1t} | a_{t-1}, x_{t-1}, \theta)$.
- If evaluating or drawing from $p(x_{1t}|a_{t-1}, x_{t-1}, \theta)$ is difficult some other importance sampler can be substituted.

Outline

- Overview
- Example
- Econometrics
 - ▷ Overview
 - ▷ Eliminating unobservables
 - ▷ Theory
- Simulation

Estimation Overview

- 1. In an MCMC loop, propose a parameter value and a seed.
- 2. Given the parameter value **and the seed**, compute an unbiased estimator of the integrated likelihood.
 - Compute by averaging a likelihood that includes latent variables over particles for those latent variables.
- 3. Use the estimate of the integrated likelihood to make the accept/reject decision of the MCMC algorithm.

Main point: Deliberately put Monte Carlo jitter into the particle filter.

The Likelihood

• With latent variables

$$L_t(\theta) = \left[\prod_{s=1}^t p(a_t \mid x_s, \theta) p(x_s \mid a_{s-1}, x_{s-1}, \theta)\right] p(a_0, x_0 \mid \theta)$$

• Without latent variables

$$\mathcal{L}(\theta) = \prod_{t=1}^{T} \int \cdots \int L_t(\theta) \prod_{s=0}^{t} dx_{1,s}$$

 Integrate by averaging sequentially over progressively longer particles. Concatenated draws for fixed k that start at time s and end at time t are denoted

$$\tilde{x}_{1,s:t}^{(k)} = (\tilde{x}_{1,s}^{(k)}, \dots, \tilde{x}_{1,t}^{(k)});$$

 $\tilde{x}_{1,0:t}^{(k)}$ is called a particle.

Particle Filter

1. For t = 0

(a) Start N particles by drawing $\tilde{x}_{1,0}^{(k)}$ from $p(x_{1,0} | \theta)$ using s as the initial seed and putting $\bar{w}_0^{(k)} = \frac{1}{N}$ for k = 1, ..., N.

(b) If $p(a_t, x_{2t} | x_{1,t-1}, \theta)$ is available, then compute $\widehat{C}_0 = \frac{1}{N} \sum_{k=1}^{N} p(a_0, x_{2,0} | \widetilde{x}_{1,0}^{(k)}, \theta) \text{ otherwise put } \widehat{C}_0 = 1.$

(c) Set $x_{1,0:0}^{(k)} = \tilde{x}_{1,0}^{(k)}$.

2. For
$$t = 1, ..., n$$

(a) For each particle, draw $\tilde{x}_{1t}^{(k)}$ from the transition density
 $p(x_{1t} | a_{t-1}, x_{1,t-1}^{(k)}, x_{2,t-1}, \theta).$

(b) Compute

$$\bar{v}_{t}^{(k)} = \frac{p\left(a_{t} \mid \tilde{x}_{1,t}^{(k)}, x_{2,t}, \theta\right) p\left(\tilde{x}_{1,t}^{(k)}, x_{2,t} \mid a_{t-1}, x_{1,t-1}^{(k)}, x_{2,t-1}, \theta\right)}{p\left(\tilde{x}_{1,t}^{(k)} \mid a_{t-1}, x_{1,t-1}^{(k)}, x_{2,t-1}, \theta\right)}$$

$$\hat{C}_{t} = \frac{1}{N} \sum_{k=1}^{N} \bar{v}_{t}^{(k)}$$

(c) Set

$$\tilde{x}_{1,0:t}^{(k)} = \left(x_{1,0:t-1}^{(k)}, \tilde{x}_{1,t}^{(k)}\right).$$

(d) Compute the normalized weights

$$\widehat{w}_t = \frac{\overline{v}_t^{(k)}}{\sum_{k=1}^N \overline{v}_t^{(k)}}$$

- (e) For k = 1, ..., N draw $x_{1,0:t}^{(k)}$ by sampling with replacement from the set $\{\tilde{x}_{1,0:t}^{(k)}\}$ according to the weights $\{\hat{w}_t^{(k)}\}$.
- (f) Note the convention: Particles with unequal weights $\bar{v}_t^{(k)}$ are denoted by $\{\tilde{x}_{0:t}^{(k)}\}$. After resampling the particles have equal weights $\frac{1}{N}$ and are denoted by $\{x_{0:t}^{(k)}\}$.

3. Done

(a) An unbiased estimate of the likelihood is

$$\ell' = \prod_{t=0}^{T} \widehat{C}_t$$

and s' is the last seed returned in Step 2e.

Why Does This Work?

 \bullet For each particle, draw $\tilde{x}_{1t}^{(k)}$ from the transition density

$$p(x_{1t} | a_{t-1}, x_{1,t-1}^{(k)}, x_{2,t-1}, \theta).$$

• Compute

$$\bar{v}_{t}^{(k)} = \frac{p\left(a_{t} \mid \tilde{x}_{1,t}^{(k)}, x_{2,t}, \theta\right) p\left(\tilde{x}_{1,t}^{(k)}, x_{2,t} \mid a_{t-1}, x_{1,t-1}^{(k)}, x_{2,t-1}, \theta\right)}{p\left(\tilde{x}_{1,t}^{(k)} \mid a_{t-1}, x_{1,t-1}^{(k)}, x_{2,t-1}, \theta\right)}$$

$$\hat{C}_{t} = \frac{1}{N} \sum_{k=1}^{N} \bar{v}_{t}^{(k)}$$

• An unbiased estimate of the likelihood is

$$\ell(\theta, s) = \prod_{t=0}^{T} \widehat{C}_t$$

Verification is Remarkably Simple

- Theorem 1 establishs a recursion using Bayes theorem. The idea is straightforward and is expressed as one four line equation. The remainder of the proof is algebra to reduce the basic expression to model primitives.
- Corollary 1 establish unbiasedness via a simple two line telescoping expression.
- Theorem 2 shows that resampling is a mere footnote requiring only three sentences to dismiss.

Verification Requires Some Notation

- In the Bayesian paradigm, θ and $\{a_t, x_t\}_{t=-\infty}^{\infty}$ are defined on a common probability space. Let $\mathcal{F}_t = \sigma \left\{ \{a_s, x_{2s}\}_{s=-T_0}^t, \theta \right\}$.
- Particle filters are implemented by drawing independent uniform random variables $u_t^{(k)}$ and then evaluating a function of the form $X_{1t}(u)$ and putting $\tilde{x}_{1t}^{(k)} = X_{1t}(u_t^{(k)})$ for k = 1, ..., N.
 - ▷ Let $\tilde{\mathcal{E}}_{1t}$ denote integration with respect to $\left(u_t^{(1)}, \ldots, u_t^{(N)}\right)$ with $\tilde{x}_{1t}^{(k)} = X_{1t}(u_t^{(k)})$ substituted into the integrand.

 $\triangleright \tilde{\mathcal{E}}_{1,0:t}$ is defined similarly.

• Unbiasedness is a corollary of the following result.

THEOREM 1 If particles $\tilde{x}_{1,0:t}^{(k)}$ and weights $\tilde{w}_t^{(k)}$, k = 1, ..., N, satisfy

$$\int g(x_{1,0:t}) dP(x_{1,0:t} | \mathcal{F}_t) = \tilde{\mathcal{E}}_{1,0:t} \left\{ \mathcal{E} \left[\sum_{k=1}^N \tilde{w}_t^{(k)} g(\tilde{x}_{1,0:t}^{(k)}) | \mathcal{F}_t \right] \right\}$$
(6)

then draws $ilde{x}_{1,t+1}^{(k)}$ from $p(x_{1,t+1}| ilde{x}_{1,0:t}^{(k)},\mathcal{F}_t)$ and weights

$$\tilde{w}_{t+1}^{(k)} = \frac{\bar{v}_{t+1}^{(k)}}{C_{t+1}} \tilde{w}_t^{(k)}$$
(7)

satisfy

$$\int g(x_{1,0:t}, x_{1,t+1}) dP(x_{1,0:t}, x_{1,t+1} | \mathcal{F}_{t+1}) = \tilde{\mathcal{E}}_{1,t+1} \tilde{\mathcal{E}}_{1,0:t} \left\{ \mathcal{E} \left[\sum_{k=1}^{N} \tilde{w}_{t+1}^{(k)} g(\tilde{x}_{1,0:t}^{(k)}, \tilde{x}_{1,t+1}^{(k)}) | \mathcal{F}_{t+1} \right] \right\},$$
(8)

where

$$\bar{v}_{t+1}^{(k)} = \frac{p\left(a_{t+1} \mid \tilde{x}_{1,t+1}^{(k)}, x_{2,t+1}, \theta\right) p\left(\tilde{x}_{1,t+1}^{(k)}, x_{2,t+1} \mid a_t, \tilde{x}_{1,t}^{(k)}, x_{2,t}, \theta\right)}{p\left(\tilde{x}_{1,t+1}^{(k)} \mid a_t, \tilde{x}_{1,t}^{(k)}, x_{2,t}, \theta\right)}$$
(9)

and

$$C_{t+1} = p(a_{t+1}, x_{2,t+1} | \mathcal{F}_t).$$
(10)

Proof We show the result for the weights

$$\tilde{w}_{t+1}^{(k)} = \frac{p(a_{t+1}, x_{2,t+1} | \tilde{x}_{1,0:t}^{(k)}, \tilde{x}_{1,t+1}^{(k)}, \mathcal{F}_t)}{p(a_{t+1}, x_{2,t+1} | \mathcal{F}_t)} \tilde{w}_t^{(k)},$$
(11)

then show that (11) and (7) are equivalent expressions for $\tilde{w}_{t+1}^{(k)}$.

Bayes theorem states that

$$p(x_{1,0:t}, x_{1,t+1}|a_{t+1}, x_{2,t+1}, \mathcal{F}_t) = \frac{p(a_{t+1}, x_{2,t+1}, x_{1,0:t}, x_{1,t+1}|\mathcal{F}_t)}{p(a_{t+1}, x_{2,t+1}|\mathcal{F}_t)}.$$
 (12)

Note that

$$p(x_{1,0:t}, x_{1,t+1}|a_{t+1}, x_{2,t+1}, \mathcal{F}_t) = p(x_{1,0:t}, x_{1,t+1}|\mathcal{F}_{t+1})$$
(13)

and that

$$p(a_{t+1}, x_{2,t+1}, x_{1,0:t}, x_{1,t+1} | \mathcal{F}_t)$$

= $p(a_{t+1}, x_{2,t+1} | x_{1,0:t}, x_{1,t+1}, \mathcal{F}_t) p(x_{1,t+1} | x_{1,0:t}, \mathcal{F}_t) p(x_{1,0:t} | \mathcal{F}_t).$ (14)

Then

$$\int g(x_{1,0:t}, x_{1,t+1}) dP(x_{1,0:t}, x_{1,t+1} | \mathcal{F}_{t+1})$$

$$= \iint g(x_{1,0:t}, x_{1,t+1}) \frac{p(a_{t+1}, x_{2,t+1} | x_{1,0:t}, x_{1,t+1}, \mathcal{F}_{t})}{p(a_{t+1}, x_{2,t+1} | \mathcal{F}_{t})} p(x_{1,t+1} | x_{1,0:t}, \mathcal{F}_{t})$$

$$\times dx_{1,t+1} dP(x_{1,0:t} | \mathcal{F}_{t})$$
(15)

$$= \tilde{\mathcal{E}}_{1,0:t} \int \mathcal{E} \left[\sum_{k=1}^{N} g(\tilde{x}_{1,0:t}^{(k)}, x_{1,t+1}) w_{t+1}^{(k)} p(x_{1,t+1} | \tilde{x}_{1,0:t}^{(k)}, \mathcal{F}_{t}) | \mathcal{F}_{t} \right] dx_{1,t+1} \quad (16)$$

$$= \tilde{\mathcal{E}}_{1,t+1} \tilde{\mathcal{E}}_{1,0:t} \mathcal{E} \left[\sum_{k=1}^{N} g(\tilde{x}_{1,0:t}^{(k)}, \tilde{x}_{1,t+1}^{(k)}) \tilde{w}_{t+1}^{(k)} | \mathcal{F}_{t+1} \right] \quad (17)$$

where (15) is due to (12) after substituting (13) and (14), (16) is due to (6) and (11), and (17) is due to the fact that $\tilde{x}_{1,t+1}^{(k)}$ is a draw from $p(x_{1,t+1}|\tilde{x}_{1,0:t}^{(k)}, \mathcal{F}_t)$. This proves the result for the weights (11).

Showing (11) and (7) are equivalent expressions for $\tilde{w}_{t+1}^{(k)}$ is just algebra.

COROLLARY 1 If one starts the recursion of Theorem 1 with draws from the marginal stationary density (5) and weights $\tilde{w}_0^{(k)} = 1/N$, then

$$\hat{\ell}' = \left(\sum_{k=1}^{N} \bar{v}_{T}^{(k)} \frac{\tilde{w}_{T-1}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{T-1}^{(k)}}\right) \left(\sum_{k=1}^{N} \bar{v}_{T-1}^{(k)} \frac{\tilde{w}_{T-2}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{T-2}^{(k)}}\right) \cdots \left(\sum_{k=1}^{N} \bar{v}_{1}^{(k)} \frac{\tilde{w}_{0}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{0}^{(k)}}\right) \left(\sum_{k=1}^{N} \tilde{w}_{0}^{(k)}\right)$$
(18)

is an unbiased estimator of ℓ' .

Proof Set $g(x_{1,0:t}, u) \equiv 1$ in Theorem 1 whence $1 = \tilde{\mathcal{E}}_{1,0:T} \left\{ \mathcal{E} \left[\sum_{k=1}^{N} \tilde{w}_{t}^{(k)} | \mathcal{F}_{T} \right] \right\}$. Write

$$\sum_{k=1}^{N} \tilde{w}_{T}^{(k)} = \frac{1}{C_{T}} \left(\frac{\sum_{k=1}^{N} \bar{v}_{T}^{(k)} \tilde{w}_{T-1}^{(k)}}{\sum_{k=1}^{N} \bar{v}_{T-1}^{(k)} \tilde{w}_{T-2}^{(k)}} \right) \left(\frac{\sum_{k=1}^{N} \bar{v}_{T-1}^{(k)} \tilde{w}_{T-2}^{(k)}}{\sum_{k=1}^{N} \bar{v}_{T-2}^{(k)} \tilde{w}_{T-3}^{(k)}} \right) \cdots \left(\frac{\sum_{k=1}^{N} \bar{v}_{1}^{(k)} \tilde{w}_{0}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{0}^{(k)}} \right) \left(\sum_{k=1}^{N} \tilde{w}_{0}^{(k)} \right) \\ = \frac{1}{\ell'} \left(\sum_{k=1}^{N} \bar{v}_{T}^{(k)} \frac{\tilde{w}_{T-1}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{T-1}^{(k)}} \right) \left(\sum_{k=1}^{N} \bar{v}_{T-1}^{(k)} \frac{\tilde{w}_{T-2}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{T-2}^{(k)}} \right) \cdots \left(\sum_{k=1}^{N} \bar{v}_{1}^{(k)} \frac{\tilde{w}_{0}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{0}^{(k)}} \right) \left(\sum_{k=1}^{N} \tilde{w}_{0}^{(k)} \right) \left(\sum_{k=1}^{N} \bar{w}_{0}^{(k)} \right) \cdots \left(\sum_{k=1}^{N} \bar{v}_{1}^{(k)} \frac{\tilde{w}_{0}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{0}^{(k)}} \right) \left(\sum_{k=1}^{N} \tilde{w}_{0}^{(k)} \right) \left(\sum_{k=1}^{N} \tilde{w}_{0}^{(k)} \right) \left(\sum_{k=1}^{N} \bar{w}_{0}^{(k)} \right) \cdots \left(\sum_{k=1}^{N} \bar{w}_{1}^{(k)} \frac{\tilde{w}_{0}^{(k)}}{\sum_{k=1}^{N} \tilde{w}_{0}^{(k)}} \right) \left(\sum_{k=1}^{N} \tilde{w}_{0}^{(k)} \right) \left(\sum_{k=1$$

The result follows.

THEOREM 2 Theorem 1 and Corollary 1 remain valid if resampling is applied between recursive steps.

Proof If a set of particles and weights satisfy condition (6) then so will the particles and weights generated from them by resampling. Because a set of particles and weights satisfy condition (6) at the end of an iterate, the set of particles and weights generated from them by resampling will satisfy (6) when used at the beginning of an iterate. The only formal change to the development required is that $\tilde{\mathcal{E}}_{1,0:t}$ becomes expectation both with respect to the uniform draws that advance the filter and to the uniform draws involved in resampling.

REMARK 1 For any resampling scheme that produces equal weights, the conclusion of Corollary 1 becomes

$$\hat{\ell}' = \left(\frac{1}{N} \sum_{k=1}^{N} \bar{v}_{T}^{(k)}\right) \left(\frac{1}{N} \sum_{k=1}^{N} \bar{v}_{T-1}^{(k)}\right) \cdots \left(\frac{1}{N} \sum_{k=1}^{N} \bar{v}_{1}^{(k)}\right)$$

is an unbiased estimator of ℓ' .

Outline

- Overview
- Example
- Econometrics
- Simulation
 - ▷ Small Entry Game Design
 - ▷ Small Entry Game Results
 - ▷ Large Game Design
 - ▷ Large Game Results

Entry Game Design – 1

- Three firms, time increment one year.
 - \triangleright β is 20% internal rate of return
 - \triangleright μ_c and μ_r imply 30% profit margin, persistent ρ_c
 - $\triangleright \kappa_a$ is a 20% hit to margin with ρ_a at 6 mo. half life.
 - \triangleright σ_c and σ_r chosen to prevent monopoly
 - \triangleright Outcome uncertainty $1 p_a$ is 5% (from an application).
- Simulated with

$$\theta = (\mu_c, \rho_c, \sigma_c, \mu_r, \sigma_r, \rho_a, \kappa_a, \beta, p_a)$$

= (9.7, 0.9, 0.1, 10.0, 2.0, 0.5, 0.2, 0.83, 0.95)
$$T_0 = 160, \text{ sm} : T = 40, \text{ md} : T = 120, \text{ lg} : T = 360$$

Entry Game Design – 2

- 1. Fit with blind importance sampler, and multinomial resampling.
- 2. Fit with adaptive importance sampler, and multinomial resampling.
- 3. Fit with adaptive importance sampler, and systematic resampling.

Results – 1

• A large sample size is better. In Tables 2 through 4 the estimates shown in the columns labeled "Ig" would not give misleading results in an application.

Results – 2

- Constraining β is beneficial: compare Figures 1 and 2. The constraint reduces the bimodality of the marginal posterior distribution of σ_r and pushes all histograms closer to unimodality.
- Constraining p_a is irrelevant except for a small savings in computational cost: compare columns " β " and " β & p_a " in Tables 2 through 4.

Results – 3

• Improvements to the particle filter are helpful. In particular, an adaptive importance sampler is better than a blind importance sampler; compare Tables 2 and 3 and compare Figures 3 and 4. Systematic resampling is better than multinomial resampling; compare Tables 3 and 4.

					Constrained					
Parameter Unconstrained			β			eta & p_a				
value	sm	md	lg	sm	md	lg	sm	md	lg	
μ_c 9.70	10.10 (0.15)	9.72 (0.12)	9.68 (0.06)	9.94 (0.19)	9.67 (0.11)	9.68 (0.06)	9.86 (0.18)	9.72 (0.12)	9.68 (0.06)	
$\rho_c 0.90$	0.58 (0.25)	0.86 (0.09)	0.92 (0.03)	0.69 (0.26)	0.92 (0.05)	0.91 (0.03)	0.69 (0.25)	0.85 (0.11)	0.91 (0.03)	
$\sigma_c = 0.10$	0.16 (0.05)	0.09 (0.03)	0.09 (0.01)	0.17 (0.06)	0.08 (0.03)	0.10 (0.01)	0.15 (0.07)	0.09 (0.03)	0.10 (0.01)	
μ_r 10.00	9.87 (0.10)	9.98 (0.03)	9.96 (0.02)	9.88 (0.10)	9.99 (0.03)	9.98 (0.02)	9.84 (0.13)	9.99 (0.06)	9.99 (0.02)	
σ_r 2.00	1.95 (0.09)	1.97 (0.05)	1.98 (0.01)	2.02 (0.08)	2.00 (0.02)	2.02 (0.02)	2.04 (0.10)	2.00 (0.03)	2.03 (0.01)	
$ \rho_a = 0.50 $	0.76 (0.09)	$0.56 \\ (0.07)$	0.58 (0.06)	0.59 (0.22)	0.57 (0.09)	$0.56 \\ (0.05)$	$0.76 \\ (0.10)$	0.57 (0.07)	0.52 (0.04)	
$\kappa_a 0.20$	0.04 (0.05)	0.24 (0.05)	0.19 (0.02)	$0.15 \\ (0.07)$	$0.26 \\ (0.05)$	0.20 (0.03)	0.14 (0.06)	0.22 (0.06)	0.22 (0.03)	
eta = 0.83	$0.90 \\ (0.07)$	$0.95 \\ (0.04)$	0.87 (0.04)	0.83	0.83	0.83	0.83	0.83	0.83	
$p_a = 0.95$	0.97 (0.02)	0.94 (0.01)	$0.95 \\ (0.01)$	$0.96 \\ (0.02)$	0.94 (0.01)	$0.95 \\ (0.01)$	0.95	0.95	0.95	

Table 2	Blind Sampler	Multinomial	Resampling
	Dinia Sampler,	, watchionnar	resumpting

					Constrained						
Par	rameter	Uno	constrai	ned		β			eta & p_a		
	value	sm	md	lg	sm	md	lg	sm	md	lg	
	0.70	10.00	0.89	0.77	0.02	0.74	0.70	0.85	0.73	0.65	
μ_c	9.10	(0.24)	(0.07)	(0.05)	(0.12)	(0.07)	(0.06)	(0.15)	(0.09)	(0.05)	
$ ho_c$	0.90	0.95	0.85	0.87	0.87	0.92	0.93	0.87	0.92	0.94	
, -		(0.03)	(0.07)	(0.05)	(0.08)	(0.04)	(0.03)	(0.09)	(0.04)	(0.02)	
σ_c	0.10	0.14	0.09	0.10	0.12	0.08	0.08	0.12	0.09	0.08	
		(0.02)	(0.02)	(0.01)	(0.04)	(0.02)	(0.01)	(0.04)	(0.03)	(0.01)	
μ_r	10.00	9.93	10.00	10.01	10.00	9.99	9.97	9.94	9.96	9.96	
		(0.06)	(0.02)	(0.01)	(0.05)	(0.02)	(0.02)	(0.07)	(0.03)	(0.03)	
σ_r	2.00	1.93	1.98	1.99	2.01	1.98	2.00	2.03	1.97	1.99	
		(0.10)	(0.02)	(0.02)	(0.09)	(0.01)	(0.01)	(0.09)	(0.02)	(0.02)	
ρ_a	0.50	-0.11	0.51	0.47	0.56	0.59	0.57	0.47	0.51	0.61	
		(0.21)	(0.09)	(0.06)	(0.17)	(0.06)	(0.06)	(0.20)	(0.07)	(0.05)	
κ_a	0.20	0.19	0.20	0.17	0.17	0.21	0.18	0.24	0.20	0.19	
		(0.02)	(0.03)	(0.02)	(0.06)	(0.02)	(0.02)	(0.03)	(0.02)	(0.02)	
β	0.83	0.87	0.95	0.92	0.83	0.83	0.83	0.83	0.83	0.83	
		(0.10)	(0.03)	(0.04)							
p_a	0.95	0.95	0.94	0.95	0.96	0.95	0.95	0.95	0.95	0.95	
		(0.01)	(0.01)	(0.01)	(0.02)	(0.01)	(0.01)				

Table 3. Adaptive Sampler, Multinomial Resampling

					Constrained						
Paran	meter	Une	constrai	ined	β			$\beta \& p_a$			
v	value	sm	md	lg	sm	md	lg	sm	md	lg	
μ_c §	9.70	9.87 (0.24)	9.82 (0.07)	9.72 (0.05)	9.81 (0.12)	9.78 (0.07)	9.68 (0.06)	9.78 (0.15)	9.76 (0.09)	9.65 (0.05)	
$ ho_c$ (0.90	0.77 (0.03)	0.82 (0.07)	$0.91 \\ (0.05)$	0.93 (0.08)	0.94 (0.04)	0.94 (0.03)	0.86 (0.09)	0.92 (0.04)	0.94 (0.02)	
σ_c (0.10	0.14 (0.02)	0.10 (0.02)	$0.09 \\ (0.01)$	0.14 (0.04)	0.08 (0.02)	0.08 (0.01)	0.11 (0.04)	0.08 (0.03)	0.08 (0.01)	
μ_r 1	10.00	10.05 (0.06)	10.00 (0.02)	9.97 (0.01)	$9.95 \\ (0.05)$	9.96 (0.02)	9.94 (0.02)	9.78 (0.07)	9.95 (0.03)	9.96 (0.03)	
σ_r 2	2.00	1.94 (0.10)	1.99 (0.02)	1.99 (0.02)	1.93 (0.09)	1.97 (0.01)	2.01 (0.01)	2.07 (0.09)	1.98 (0.02)	1.97 (0.02)	
$ ho_a$ (0.50	0.61 (0.21)	0.53 (0.09)	$0.56 \\ (0.06)$	0.41 (0.17)	$0.36 \\ (0.06)$	0.61 (0.06)	0.71 (0.20)	0.58 (0.07)	0.64 (0.05)	
κ_a (0.20	0.21 (0.02)	0.22 (0.03)	0.18 (0.02)	0.20 (0.06)	0.18 (0.02)	0.18 (0.02)	0.17 (0.03)	0.19 (0.02)	0.18 (0.02)	
eta (0.83	0.93 (0.10)	0.96 (0.03)	0.90 (0.04)	0.83	0.83	0.83	0.83	0.83	0.83	
p _a (0.95	$0.96 \\ (0.01)$	0.94 (0.01)	$0.95 \\ (0.01)$	$0.95 \\ (0.02)$	0.93 (0.01)	$0.95 \\ (0.01)$	0.95	0.95	0.95	

Table 4. Adaptive Sampler, Systematic Resampling

Figure 1. Posterior Distributions, Unconstrained, Blind Sampler, Md.

Circles indicate entry. Dashed line is true unobserved cost. The solid line is the average of β constrained estimates over all MCMC repetitions, with a stride of 25. The dotted line is \pm 1.96 standard deviations about solid line. The sum of the norms of the difference between the solid and dashed lines is 0.186146.

Circles indicate entry. Dashed line is true unobserved cost. The solid line is the average of β constrained estimates over all MCMC repetitions, with a stride of 25. The dotted line is \pm 1.96 standard deviations about solid line. The sum of the norms of the difference between the solid and dashed lines is 0.169411.

Large Number of Players Design – 1

• Oblivious equilibrium: Weintraub, Benkard, and Roy (2008)

▷ Logit utility
$$u_{ijt} = \theta_1 \ln \left(\frac{x_{it}}{\psi} + 1 \right) + \theta_2 \ln \left(Y - p_{it} \right) + v_{ijt}$$
,

- ▷ Investment strategy $\iota_{it} = \iota(x_{it}, s_{-i,t})$ that increases quality one level with probability $\frac{a\iota}{1+a\iota}$
- \triangleright Quality depreciates by one level with probability δ .
- $\triangleright x$ is product quality, Y income, p price, s = x state, *ijt* indexes firm, consumer, time.
- ▷ Many other details.
- We estimate utility and transition dynamics $\theta = (\theta_1, \theta_2, \psi, a, \delta)$.
- All else the same as in the Matlab code on the authors' website.

Large Number of Players Design – 2

- Unique equilibrium p_{it}^* yielding a multinomial for number of customers attracted by firm and a transition matrix for the state.
- Customers are the observable, the state is the unobservable.
 - ▷ 50 customers
 - ▷ 20 firms, hence 20 dimensional state
 - \triangleright 5 time periods
- Prior has positive support conditions, otherwise uninformative.

		Posterior				
Parameter	Value	Mean	Std. Dev.			
$ heta_1$	1.00000	0.97581	0.04799			
$ heta_2$	0.50000	0.53576	0.07317			
ψ	1.00000	1.01426	0.07070			
a	3.00000	2.96310	0.06846			
δ	0.70000	0.64416	0.05814			

Table 5. Large Game, Blind Sampler, Stratified Resampling

The data were generated according to the oblivious equilibrium model with parameters for the consumer's utility function and firm's transition function set as shown in the column labeled "Value" and all others set to the author's calibrated values. The number of firms is 20 and the number of consumers is 50. T = 5. The prior is uninformative except for a support conditon that all values be positive. The number of MCMC repetitions is 109,000 and the number of particles per repetition is 32696.