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Econometric Problem

• Estimate a dynamic game

⊲ with partially observed state

⊲ with serially correlated state

⊲ with (possibly) endogenous state

⊲ with (possibly) complete information

⊲ with continuous or discrete choice

⊲ with (mixed) continuous or discrete state

• Applications:

⊲ Entry and exit from industry, technology adoption, tech-

nology upgrades, introduction of new products, discontin-

uation of old products, relocation decisions, etc.



Econometric Approach

• Bayesian econometrics

⊲ accommodates a nondifferentiable, nonlinear likelihood

⊲ easy to parallelize

⊲ allows the use of prior information

• Develop a general solution algorithm

⊲ computes pure strategy subgame perfect Markov equilibria

⊲ using a locally linear value function

• Use sequential importance sampling (particle filter)

⊲ to integrate unobserved variables out of the likelihood

⊲ to estimate ex-post trajectory of unobserved variables



Results

• Method is exact

⊲ Stationary distribution of MCMC chain is the posterior.

⊲ Because we prove the computed likelihood is unbiased.

⊲ Efficient, number of required particles is small.

• Regularity conditions minimal.
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Table 1. Generic pharmaceuticals, Scott-Morton (1999)

Dominant Firms
(enter = 1, not enter = 0)

Drug / Active Ingredient ANDA Date Mylan Novopharm Lemmon Geneva Total Revenue
Entrants ($’000s)

Sulindac 03 Apr. 90 1 0 1 1 7 189010
Erythromycin Stearate 15 May 90 0 0 0 0 1 13997
Atenolol 31 May 90 1 0 0 0 4 69802
Nifedipine 04 Jul. 90 0 1 0 0 5 302983
Minocycline Hydrochloride 14 Aug. 90 0 0 0 0 3 55491
Methotrexate Sodium 15 Oct. 90 1 0 0 0 3 24848
Pyridostigmine Bromide 27 Nov. 90 0 0 0 0 1 2113
Estropipate 27 Feb. 91 0 0 0 0 2 6820
Loperamide Hydrochloride 30 Aug. 91 1 1 1 1 5 31713
Phendimetrazine 30 Oct. 91 0 0 0 0 1 1269
Tolmetin Sodium 27 Nov. 91 1 1 1 1 7 59108
Clemastine Fumarate 31 Jan. 92 0 0 1 0 1 9077
Cinoxacin 28 Feb. 92 0 0 0 0 1 6281
Diltiazem Hydrochloride 30 Mar. 92 1 1 0 0 5 439125
Nortriptyline Hydrochloride 30 Mar. 92 1 0 0 1 3 187683
Triamterene 30 Apr. 92 0 0 0 1 2 22092
Piroxicam 29 May 92 1 1 1 0 9 309756
Griseofulvin Ultramicrocrystalline 30 Jun. 92 0 0 0 0 1 11727
Pyrazinamide 30 Jun. 92 0 0 0 0 1 306
Diflunisal 31 Jul. 92 0 0 1 0 2 96488
Carbidopa 28 Aug. 92 0 0 1 0 4 117233
Pindolol 03 Sep. 92 1 1 0 1 7 37648
Ketoprofen 22 Dec. 92 0 0 0 0 2 107047
Gemfibrozil 25 Jan. 93 1 0 1 0 5 330539
Benzonatate 29 Jan. 93 0 0 0 0 1 2597
Methadone Hydrochloride 15 Apr. 93 0 0 0 0 1 1858
Methazolamide 30 Jun. 93 0 0 0 1 3 4792
Alprazolam 19 Oct. 93 1 1 0 0 7 614593
Nadolol 31 Oct. 93 1 0 0 0 2 125379
Levonorgestrel 13 Dec. 93 0 0 0 0 1 47836
Metoprolol Tartrate 21 Dec. 93 1 1 0 1 9 235625
Naproxen 21 Dec. 93 1 1 1 1 8 456191
Naproxen Sodium 21 Dec. 93 1 1 1 1 7 164771
Guanabenz Acetate 28 Feb. 94 0 0 0 0 2 18120
Triazolam 25 Mar. 94 0 0 0 0 2 71282
Glipizide 10 May 94 1 0 0 0 1 189717
Cimetidine 17 May 94 1 1 0 0 3 547218
Flurbiprofen 20 Jun. 94 1 0 0 0 1 155329
Sulfadiazine 29 Jul. 94 0 0 0 0 1 72
Hydroxychloroquine Sulfate 30 Sep. 94 0 0 0 0 1 8492

Mean 0.45 0.28 0.25 0.25 3.3 126901



Entry Game Characteristics

• Costs

⊲ Serially correlated.

⊲ Partially observed.

• Endogenous state

⊲ Entry changes future costs.

∗ Capacity constraint: increased costs.

∗ Learning: decreased costs.

⊲ Induces heterogeneity.

• Complete information

⊲ Firms know each other’s revenue and costs.

• Simultaneous move dynamic game.



An Entry Game I

• There are i = 1, . . . , I, firms that are identical ex ante.

• Firms maximize PDV of profits over t, . . . ,∞

• Each period t a market opens and firms make entry decisions:

⊲ If enter Ai,t = 1, else Ai,t = 0.

• Number of firms in the market at time t, is Nt =
∑I
i=1Ai,t.



An Entry Game II

• Gross revenue Rt is exogenously determined.

• A firm’s payoff is Rt/Nt − Ci,t where Ci,t is “cost”.

• Costs are endogenous to past entry decisions:

⊲ ci,t = ci,u,t+ ci,k,t (lower case denotes logs)

⊲ ci,u,t = µc+ ρc (ci,u,t−1 − µc) + σceit

⊲ ci,k,t = ρa ci,k,t−1 + κaAi,t−1

⊲ Source of the dynamics

• Coordination game: If multiple equilibria (rare), the lowest

cost firms are the entrants.



Solution I: Bellman Equation
For each player

Vi(Cit, C−i,t, Rt)

= AEit
(

Rt/N
E
t − Cit

)

+ β E
[

Vi(Ci,t+1, C−i,t+1, Rt+1) |A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt

]

The value function for all players is

V (Ct, Rt) =
(

V1(C1t, C−1t, Rt), . . . , VI(CIt, C−It, Rt)
)

– V (ct, rt) is approximated by a local linear function.

– The integral is computed by Gauss-Hermite quadrature.



Solution II: Subgame Perfect Markov Equilibrium

Equilibrium condition (Nash)

Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt) ≥ Vi(Ai,t, A

E
−i,t, Ci,t, C−i,t, Rt) ∀ i, t.

where

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt)

= Ait (Rt/Nt − Cit)

+ βE
[

Vi(A
E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1)|Ai,t, A−i,t, Ci,t, C−i,t, Rt

]

is the choice-specific payoff function.

Complete information: Ct, Rt known implies AEt known whence

Vi(A
E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1) = Vi(Ci,t+1, C−i,t+1, Rt+1)



Solution III: Local Linear Approximation

• The value function V is approximated as follows:

⊲ Define a coarse grid on s = (cu,1, . . . , cu,I , r, ck,1, . . . , ck,I).Each

hypercube of the grid is indexed its centroid K, called its

key. The local linear approximation over the Kth hyper-

cube is VK(s) = bK + (BK)s.

⊲ For a three player game VK is 3 × 1, bK is 3 × 1 , BK is

3× 7, and s is 7× 1.

• The local approximator is determined at key K by (1) solving

the game at a set {sj} of states within the Kth hypercube,

(2) computing {Vj = V (sj)} using the Bellman equation, and

(3) computing the coefficients bK and BK by regressing {Vj}

on {sj}. Continue until bK and BK stabilize.

⊲ Usually only 6 hypercubes are visited.



An Entry Game – Summary

• Log revenue: rt

• Log costs: ci,t = ci,u,t+ ci,k,t i = 1, . . . , I

⊲ ci,u,t = µc+ ρc (ci,u,t−1 − µc) + σceit

⊲ ci,k,t = ρa ci,k,t−1 + κaAi,t−1

• Parameters: θ = (µc, ρc, σc, µr, σr, ρa, κa, β, pa)

• Solution: AEt = S(cu,t, ck,t, rt, θ)

⊲ A deterministic function.



Outcome Uncertainty

• Error density

⊲ p(At |A
E
t , θ) =

∏I
i=1(pa)

δ(Ait=A
E
it)(1− pa)

1−δ(Ait=A
E
it)

⊲ AEt = S(cu,t, ck,t, rt, θ)

• Equilibrium

⊲ Firms take outcome uncertainty into account.

⊲ Bellman equations modified to include error density.



Abstraction

The state vector is

xt = (x1t, x2t), (1)

where x1t is not observed and x2t is observed. The observation

(or measurement) density is

p(at |xt, θ). (2)

The transition density is

p(xt | at−1, xt−1, θ). (3)

Its marginal is

p(x1t|at−1, xt−1, θ). (4)

The stationary density is

p(x1t | θ). (5)



Assumptions

• We can draw from p(x1t | at−1, xt−1, θ) and p(x1t | θ).

⊲ Can draw a sample from p(x1t | θ) by simulating the game,

and discarding at and x2t.

⊲ Can draw from p(x1,t | at−1, xt−1, θ) by drawing from

p(xt | at−1, xt−1, θ) and discarding x2t.

• There is an analytic expression or algorithm to compute

p(at |xt, θ), p(xt | at−1, xt−1, θ), and p(x1t|at−1, xt−1, θ).

• If evaluating or drawing from p(x1t|at−1, xt−1, θ) is difficult

some other importance sampler can be substituted.



Outline

• Overview

• Example

• Econometrics

⊲ Overview

⊲ Eliminating unobservables

⊲ Theory

• Simulation



Estimation Overview

1. In an MCMC loop, propose a parameter value and a seed.

2. Given the parameter value and the seed, compute an unbi-

ased estimator of the integrated likelihood.

• Compute by averaging a likelihood that includes latent

variables over particles for those latent variables.

3. Use the estimate of the integrated likelihood to make the

accept/reject decision of the MCMC algorithm.

Main point:

Deliberately put Monte Carlo jitter into the particle filter.



The Likelihood

• With latent variables

Lt(θ) =





t
∏

s=1

p(at |xs, θ) p(xs | as−1, xs−1, θ)



 p(a0, x0 | θ)

• Without latent variables

L(θ) =
T
∏

t=1

∫

· · ·
∫

Lt(θ)
t
∏

s=0

dx1,s

• Integrate by averaging sequentially over progressively longer

particles. Concatenated draws for fixed k that start at time

s and end at time t are denoted

x̃
(k)
1,s:t = (x̃

(k)
1,s , . . . , x̃

(k)
1,t );

x̃
(k)
1,0:t is called a particle.



Particle Filter

1. For t = 0

(a) Start N particles by drawing x̃
(k)
1,0 from p(x1,0 | θ) using s

as the initial seed and putting w̄
(k)
0 = 1

N for k = 1, . . . , N .

(b) If p(at, x2t |x1,t−1, θ) is available, then compute

Ĉ0 = 1
N

∑N
k=1 p(a0, x2,0 | x̃

(k)
1,0, θ) otherwise put Ĉ0 = 1.

(c) Set x
(k)
1,0:0 = x̃

(k)
1,0.



2. For t = 1, . . . , n

(a) For each particle, draw x̃
(k)
1t from the transition density

p(x1t | at−1, x
(k)
1,t−1, x2,t−1, θ).

(b) Compute

v̄
(k)
t =

p

(

at | x̃
(k)
1,t , x2,t, θ

)

p

(

x̃
(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

p

(

x̃
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

Ĉt =
1

N

N
∑

k=1

v̄
(k)
t



(c) Set

x̃
(k)
1,0:t =

(

x
(k)
1,0:t−1, x̃

(k)
1,t

)

.

(d) Compute the normalized weights

ŵt =
v̄
(k)
t

∑N
k=1 v̄

(k)
t

(e) For k = 1, . . . , N draw x
(k)
1,0:t by sampling with replacement

from the set {x̃
(k)
1,0:t} according to the weights {ŵ

(k)
t }.

(f) Note the convention: Particles with unequal weights v̄
(k)
t

are denoted by {x̃
(k)
0:t }. After resampling the particles have

equal weights 1
N and are denoted by {x

(k)
0:t }.



3. Done

(a) An unbiased estimate of the likelihood is

ℓ ′ =
T
∏

t=0

Ĉt

and s′ is the last seed returned in Step 2e.



Why Does This Work?

• For each particle, draw x̃
(k)
1t from the transition density

p(x1t | at−1, x
(k)
1,t−1, x2,t−1, θ).

• Compute

v̄
(k)
t =

p

(

at | x̃
(k)
1,t , x2,t, θ

)

p

(

x̃
(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

p

(

x̃
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

Ĉt =
1

N

N
∑

k=1

v̄
(k)
t

• An unbiased estimate of the likelihood is

ℓ(θ, s) =
T
∏

t=0

Ĉt



Verification is Remarkably Simple

• Theorem 1 establishs a recursion using Bayes theorem. The

idea is straightforward and is expressed as one four line equa-

tion. The remainder of the proof is algebra to reduce the

basic expression to model primitives.

• Corollary 1 establish unbiasedness via a simple two line tele-

scoping expression.

• Theorem 2 shows that resampling is a mere footnote requir-

ing only three sentences to dismiss.



Verification Requires Some Notation

• In the Bayesian paradigm, θ and {at, xt}
∞
t=−∞ are defined on

a common probability space. Let Ft = σ
{

{as, x2s}
t
s=−T0

, θ
}

.

• Particle filters are implemented by drawing independent uni-

form random variables u
(k)
t and then evaluating a function of

the form X1t(u) and putting x̃
(k)
1t = X1t(u

(k)
t ) for k = 1, . . . , N .

⊲ Let Ẽ1t denote integration with respect to

(

u
(1)
t , . . . , u

(N)
t

)

with x̃
(k)
1t = X1t(u

(k)
t ) substituted into the integrand.

⊲ Ẽ1,0:t is defined similarly.

• Unbiasedness is a corollary of the following result.



THEOREM 1 If particles x̃(k)1,0:t and weights w̃(k)
t , k = 1, . . . , N, satisfy

∫

g(x1,0:t) dP (x1,0:t|Ft) = Ẽ1,0:t

{

E

[

N
∑

k=1

w̃(k)
t g(x̃(k)1,0:t) | Ft

]}

(6)

then draws x̃(k)1,t+1 from p(x1,t+1|x̃
(k)
1,0:t,Ft) and weights

w̃(k)
t+1 =

v̄(k)t+1

Ct+1

w̃(k)
t (7)

satisfy
∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1)

= Ẽ1,t+1Ẽ1,0:t

{

E

[

N
∑

k=1

w̃(k)
t+1 g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]}

, (8)

where

v̄(k)t+1 =
p
(

at+1 | x̃
(k)
1,t+1, x2,t+1, θ

)

p
(

x̃(k)1,t+1, x2,t+1 | at, x̃
(k)
1,t , x2,t, θ

)

p
(

x̃(k)1,t+1 | at, x̃
(k)
1,t , x2,t, θ

) (9)

and

Ct+1 = p(at+1, x2,t+1|Ft). (10)



Proof We show the result for the weights

w̃(k)
t+1 =

p(at+1, x2,t+1|x̃
(k)
1,0:t, x̃

(k)
1,t+1,Ft)

p(at+1, x2,t+1|Ft)
w̃(k)
t , (11)

then show that (11) and (7) are equivalent expressions for w̃(k)
t+1.

Bayes theorem states that

p(x1,0:t, x1,t+1|at+1, x2,t+1,Ft) =
p(at+1, x2,t+1, x1,0:t, x1,t+1|Ft)

p(at+1, x2,t+1|Ft)
. (12)

Note that

p(x1,0:t, x1,t+1|at+1, x2,t+1,Ft) = p(x1,0:t, x1,t+1|Ft+1) (13)

and that

p(at+1, x2,t+1, x1,0:t, x1,t+1|Ft)

= p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)p(x1,t+1|x1,0:t,Ft)p(x1,0:t|Ft). (14)



Then
∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1)

=

∫ ∫

g(x1,0:t, x1,t+1)
p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)

p(at+1, x2,t+1|Ft)
p(x1,t+1|x1,0:t,Ft)

×dx1,t+1dP (x1,0:t|Ft) (15)

= Ẽ1,0:t

∫

E

[

N
∑

k=1

g(x̃(k)1,0:t, x1,t+1)w
(k)
t+1 p(x1,t+1|x̃

(k)
1,0:t,Ft) | Ft

]

dx1,t+1 (16)

= Ẽ1,t+1Ẽ1,0:t E

[

N
∑

k=1

g(x̃(k)1,0:t, x̃
(k)
1,t+1) w̃

(k)
t+1 | Ft+1

]

(17)

where (15) is due to (12) after substituting (13) and (14), (16) is due

to (6) and (11), and (17) is due to the fact that x̃(k)1,t+1 is a draw from

p(x1,t+1|x̃
(k)
1,0:t,Ft). This proves the result for the weights (11).

Showing (11) and (7) are equivalent expressions for w̃(k)
t+1 is just algebra.



COROLLARY 1 If one starts the recursion of Theorem 1 with draws from

the marginal stationary density (5) and weights w̃(k)
0 = 1/N , then

ℓ̂ ′ =

(

N
∑

k=1

v̄(k)T

w̃(k)
T−1

∑N
k=1 w̃

(k)
T−1

)(

N
∑

k=1

v̄(k)T−1

w̃(k)
T−2

∑N
k=1 w̃

(k)
T−2

)

· · ·

(

N
∑

k=1

v̄(k)1

w̃(k)
0

∑N
k=1 w̃

(k)
0

)(

N
∑

k=1

w̃(k)
0

)

(18)

is an unbiased estimator of ℓ ′.

Proof Set g(x1,0:t, u) ≡ 1 in Theorem 1 whence 1 = Ẽ1,0:T

{

E
[

∑N
k=1 w̃

(k)
t | FT

]}

.

Write

N
∑

k=1

w̃(k)
T =

1

CT

(

∑N
k=1 v̄

(k)
T w̃(k)

T−1
∑N

k=1 v̄
(k)
T−1w̃

(k)
T−2

)(

∑N
k=1 v̄

(k)
T−1w̃

(k)
T−2

∑N
k=1 v̄

(k)
T−2w̃

(k)
T−3

)

· · ·

(

∑N
k=1 v̄

(k)
1 w̃(k)

0
∑N

k=1 w̃
(k)
0

)(

N
∑

k=1

w̃(k)
0

)

=
1

ℓ ′

(

N
∑

k=1

v̄(k)T

w̃(k)
T−1

∑N
k=1 w̃

(k)
T−1

)(

N
∑

k=1

v̄(k)T−1

w̃(k)
T−2

∑N
k=1 w̃

(k)
T−2

)

· · ·

(

N
∑

k=1

v̄(k)1

w̃(k)
0

∑N
k=1 w̃

(k)
0

)(

N
∑

k=1

w̃(k)
0

)

The result follows.



THEOREM 2 Theorem 1 and Corollary 1 remain valid if resampling is ap-

plied between recursive steps.

Proof If a set of particles and weights satisfy condition (6) then so will the

particles and weights generated from them by resampling. Because a set of

particles and weights satisfy condition (6) at the end of an iterate, the set

of particles and weights generated from them by resampling will satisfy (6)

when used at the beginning of an iterate. The only formal change to the

development required is that Ẽ1,0:t becomes expectation both with respect to

the uniform draws that advance the filter and to the uniform draws involved

in resampling.

REMARK 1 For any resampling scheme that produces equal weights, the

conclusion of Corollary 1 becomes

ℓ̂ ′ =

(

1

N

N
∑

k=1

v̄(k)T

)(

1

N

N
∑

k=1

v̄(k)T−1

)

· · ·

(

1

N

N
∑

k=1

v̄(k)1

)

is an unbiased estimator of ℓ ′.
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Entry Game Design – 1

• Three firms, time increment one year.

⊲ β is 20% internal rate of return

⊲ µc and µr imply 30% profit margin, persistent ρc

⊲ κa is a 20% hit to margin with ρa at 6 mo. half life.

⊲ σc and σr chosen to prevent monopoly

⊲ Outcome uncertainty 1− pa is 5% (from an application).

• Simulated with

θ = (µc, ρc, σc, µr, σr, ρa, κa, β, pa)

= (9.7,0.9,0.1,10.0,2.0,0.5,0.2,0.83,0.95)

T0 = 160, sm : T = 40, md : T = 120, lg : T = 360



Entry Game Design – 2

1. Fit with blind importance sampler, and multinomial resam-

pling.

2. Fit with adaptive importance sampler, and multinomial re-

sampling.

3. Fit with adaptive importance sampler, and systematic resam-

pling.



Results – 1

• A large sample size is better. In Tables 2 through 4 the

estimates shown in the columns labeled ”lg” would not give

misleading results in an application.



Results – 2

• Constraining β is beneficial: compare Figures 1 and 2. The

constraint reduces the bimodality of the marginal posterior

distribution of σr and pushes all histograms closer to uni-

modality.

• Constraining pa is irrelevant except for a small savings in

computational cost: compare columns “β” and “β & pa” in

Tables 2 through 4.



Results – 3

• Improvements to the particle filter are helpful. In particu-

lar, an adaptive importance sampler is better than a blind

importance sampler; compare Tables 2 and 3 and compare

Figures 3 and 4. Systematic resampling is better than multi-

nomial resampling; compare Tables 3 and 4.



Table 2. Blind Sampler, Multinomial Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 10.10 9.72 9.68 9.94 9.67 9.68 9.86 9.72 9.68

(0.15) (0.12) (0.06) (0.19) (0.11) (0.06) (0.18) (0.12) (0.06)

ρc 0.90 0.58 0.86 0.92 0.69 0.92 0.91 0.69 0.85 0.91

(0.25) (0.09) (0.03) (0.26) (0.05) (0.03) (0.25) (0.11) (0.03)

σc 0.10 0.16 0.09 0.09 0.17 0.08 0.10 0.15 0.09 0.10

(0.05) (0.03) (0.01) (0.06) (0.03) (0.01) (0.07) (0.03) (0.01)

µr 10.00 9.87 9.98 9.96 9.88 9.99 9.98 9.84 9.99 9.99

(0.10) (0.03) (0.02) (0.10) (0.03) (0.02) (0.13) (0.06) (0.02)

σr 2.00 1.95 1.97 1.98 2.02 2.00 2.02 2.04 2.00 2.03

(0.09) (0.05) (0.01) (0.08) (0.02) (0.02) (0.10) (0.03) (0.01)

ρa 0.50 0.76 0.56 0.58 0.59 0.57 0.56 0.76 0.57 0.52

(0.09) (0.07) (0.06) (0.22) (0.09) (0.05) (0.10) (0.07) (0.04)

κa 0.20 0.04 0.24 0.19 0.15 0.26 0.20 0.14 0.22 0.22

(0.05) (0.05) (0.02) (0.07) (0.05) (0.03) (0.06) (0.06) (0.03)

β 0.83 0.90 0.95 0.87 0.83 0.83 0.83 0.83 0.83 0.83

(0.07) (0.04) (0.04)

pa 0.95 0.97 0.94 0.95 0.96 0.94 0.95 0.95 0.95 0.95

(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)



Table 3. Adaptive Sampler, Multinomial Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 10.00 9.82 9.77 9.93 9.74 9.70 9.85 9.73 9.65

(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15) (0.09) (0.05)

ρc 0.90 0.95 0.85 0.87 0.87 0.92 0.93 0.87 0.92 0.94

(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09) (0.04) (0.02)

σc 0.10 0.14 0.09 0.10 0.12 0.08 0.08 0.12 0.09 0.08

(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04) (0.03) (0.01)

µr 10.00 9.93 10.00 10.01 10.00 9.99 9.97 9.94 9.96 9.96

(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07) (0.03) (0.03)

σr 2.00 1.93 1.98 1.99 2.01 1.98 2.00 2.03 1.97 1.99

(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09) (0.02) (0.02)

ρa 0.50 -0.11 0.51 0.47 0.56 0.59 0.57 0.47 0.51 0.61

(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20) (0.07) (0.05)

κa 0.20 0.19 0.20 0.17 0.17 0.21 0.18 0.24 0.20 0.19

(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)

β 0.83 0.87 0.95 0.92 0.83 0.83 0.83 0.83 0.83 0.83

(0.10) (0.03) (0.04)

pa 0.95 0.95 0.94 0.95 0.96 0.95 0.95 0.95 0.95 0.95

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)



Table 4. Adaptive Sampler, Systematic Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µc 9.70 9.87 9.82 9.72 9.81 9.78 9.68 9.78 9.76 9.65

(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15) (0.09) (0.05)

ρc 0.90 0.77 0.82 0.91 0.93 0.94 0.94 0.86 0.92 0.94

(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09) (0.04) (0.02)

σc 0.10 0.14 0.10 0.09 0.14 0.08 0.08 0.11 0.08 0.08

(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04) (0.03) (0.01)

µr 10.00 10.05 10.00 9.97 9.95 9.96 9.94 9.78 9.95 9.96

(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07) (0.03) (0.03)

σr 2.00 1.94 1.99 1.99 1.93 1.97 2.01 2.07 1.98 1.97

(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09) (0.02) (0.02)

ρa 0.50 0.61 0.53 0.56 0.41 0.36 0.61 0.71 0.58 0.64

(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20) (0.07) (0.05)

κa 0.20 0.21 0.22 0.18 0.20 0.18 0.18 0.17 0.19 0.18

(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)

β 0.83 0.93 0.96 0.90 0.83 0.83 0.83 0.83 0.83 0.83

(0.10) (0.03) (0.04)

pa 0.95 0.96 0.94 0.95 0.95 0.93 0.95 0.95 0.95 0.95

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)



Figure 1. Posterior Distributions, Unconstrained, Blind Sampler, Md.
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Figure 2. Posterior Distributions, β Constrained, Blind Sampler, Md.
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Figure 3. Posterior Cost Estimates, β Constrained, Blind Sampler, Md.
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Circles indicate entry. Dashed line is true unobserved cost. The solid line is the
average of β constrained estimates over all MCMC repetitions, with a stride of
25. The dotted line is ± 1.96 standard deviations about solid line. The sum of
the norms of the difference between the solid and dashed lines is 0.186146.



Figure 4. Posterior Cost Estimates, β Constrained, Adaptive Sampler, Md.
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Circles indicate entry. Dashed line is true unobserved cost. The solid line is the
average of β constrained estimates over all MCMC repetitions, with a stride of
25. The dotted line is ± 1.96 standard deviations about solid line. The sum of
the norms of the difference between the solid and dashed lines is 0.169411.



Large Number of Players Design – 1

• Oblivious equilibrium: Weintraub, Benkard, and Roy (2008)

⊲ Logit utility uijt = θ1 ln
(

xit
ψ
+1

)

+ θ2 ln (Y − pit) + vijt,

⊲ Investment strategy ιit = ι(xit, s−i,t) that increases quality one level
with probability aι

1+aι

⊲ Quality depreciates by one level with probability δ.

⊲ x is product quality, Y income, p price, s = x state, ijt indexes firm,
consumer, time.

⊲ Many other details.

• We estimate utility and transition dynamics θ = (θ1, θ2, ψ, a, δ).

• All else the same as in the Matlab code on the authors’ website.



Large Number of Players Design – 2

• Unique equilibrium p∗it yielding a multinomial for number of

customers attracted by firm and a transition matrix for the

state.

• Customers are the observable, the state is the unobservable.

⊲ 50 customers

⊲ 20 firms, hence 20 dimensional state

⊲ 5 time periods

• Prior has positive support conditions, otherwise uninforma-

tive.



Table 5. Large Game, Blind Sampler, Stratified Resampling

Posterior

Parameter Value Mean Std. Dev.

θ1 1.00000 0.97581 0.04799

θ2 0.50000 0.53576 0.07317

ψ 1.00000 1.01426 0.07070

a 3.00000 2.96310 0.06846

δ 0.70000 0.64416 0.05814

The data were generated according to the oblivious equilibrium model with

parameters for the consumer’s utility function and firm’s transition function

set as shown in the column labeled “Value” and all others set to the author’s

calibrated values. The number of firms is 20 and the number of consumers

is 50. T = 5. The prior is uninformative except for a support conditon that

all values be positive. The number of MCMC repetitions is 109,000 and the

number of particles per repetition is 32696.


