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2 The Data Generation Process and
Optimization Estimators

We suppose that we are interested in analyzing a body of data
generated according to the following assumption.

Assumption DG (data generation)

Let (€, F, P) be a complete probability space. The observed data are
penerated as a realizalon

% = Xifw) = W..., V_(w), ) Viiy(w),...) weQ

of a stochastic process X ,:Q — R"™, w,e N = {1,2,...}, where V:QQ—=&",
vefV,and W: x 7 _  R® — B"* are such that X, is measurable-F/B(R"™"),
t=0,4+1,42,.... O

In what follows, any reference to Q, F, or P will be understood
as pertaining to the underlying complete probability space of this
definition, The notation B(-) denotes the Borel o-field generated by the
open sets of the indicated set.

The data we analyze are viewed as arising [rom some transformation
W, of an underlying pracess ¥,. Some or all of the elements of ¥, may be
unobserved; typically, ¥, will consist of unobserved shocks to an
economic data generaiing process. It may (but need not) also include
nonendogenous explanatory variables and/or instrumental variable
candidates. Observed elements of ¥] can also be elements of X, so that
the corresponding element of W, is simply an appropriate projection
mapping. Note that the dimension of the function W, may itsell depend
on t. By allowing this dependence, it is possible to treat situations in
which, as f grows, X, contains a growing number of lagged (or future)
values of some underlying process (such as ¥)). For simplicity, our
examples below will not exploit this possibility; we shall choose w, = w
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for all t. Nevertheless, the flexibility provided by allowing a growing
dimension for X, may prove useful in more complicated contexts.

As a simple example, consider the first order autoregressive (AR(1})
process in which observed data are generated as the realization of a
stochastic process

Y=0.Y 48, t=12.. (2.1)

where |0.| < 1, and & is an unobserved stochastic process defined on
(€, F, P). Here g, corresponds to V. The errors g need not be iid.; later
we shall assume that they are independent, but even this is unnecessary.
We also define ¥, = 0 for convenience, although it cin more generally
be a random variable. By repeated substitution we have

=1 )
Y=Y Fg_.= Y e t=12., (2.2)
=0 g=0

defining g, = Ofort < 0. Thus, the function W, carries cut the summation
and weighting by I, and ¥, corresponds to X, of assumption DG.

A more complicated example is the situation in waich the observed
data are Y, and Z, (some explanatory variables) and ¥; is generated as
the realization of a stochastic process defined accordng to the implicit
nonlinear equation

ulY, Y-, Z2;0)=¢6, t=12....

If this data generation process has a well defined reduced form, an
equivalent representation would be

}:: .JIrI{'E:i }:—llzl;ﬂﬂl! = 1121'"- '3
Substitution gives
Y, = fls: fi—1(6i=1: Yio 2 Z: - G ZA E=12

By repeated substitution for lagged values of ¥, one arrives at an
expression for ¥, which involves only present and past values of & and
Z,. Thus, in this example the observables (¥, Z,) cormspond to X, and
these can be expressed solely as functions of underlyiag variables (z, ZJ)
corresponding to V.

Later we will assume that {¥;} is a mixing process. In the present
example, it will be inappropriate to include Z, in ¥ i'it is not a mixing
process. However, if Z, can be expressed as & function of (the entire
history of ) a mixing process, say {1, }. then #, is included in ¥,
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Note that the sequence {Z,} may be nonstochastic. In this case we
simply view Z, as a iandom variable which takes on a single value with
probability one. Of course, Z, may also be a random variable, In either
case, it can be viewed as a stochastic process on (L2, F, P).

An interesting feature of assumption DG is that X, may depend not
only on past values of ¥, but also on future values. Dependence on
future values can arse when X, is a smoothed version of an underlying
time series, as when X, is a seasonally adjusted version of an underlying
seasonally unadjusted series. Practical seasonal adjustment procedures
such as the X-11 method used by the US Bureau of the Census (see e.g.
Shiskin, Young, and Musgrave 1967) typically produce a seasonally
adjusted series by smoothing over all available data (i.e. a sample of
size n). To handle suzh cases we would need to allow W, to depend also
on n, leading to corsideration of double arrays X,, = W,(..., ¥,_ ., ¥,
¥4 1,..-) Although it is possible to medify our theory to treat this case,
this entails some potential loss of generality in obtaining the strong
consistency results of chapter 3. On the other hand, weak consistency
results are readily available for doubly indexed arrays X, under
conditions weaker than those set out here (see Andrews 1987 for a
definitive discussion’. To obtain results comparable with those available
in the present litera:ure, we focus on strong consistency and consider
only singly indexed sequences. The availability of weak consistency
results for doubly indexed arrays under the conditions given here
should be borne in mind, however.

Typically, the data generation process as embodied in the probability
measure P and the transformations ¥, and W, is unknown; however,
economic theory or introspection will often yield a model for the
behavior of X,. Such models are typically probability models which
describe the stochastic behavior of the random variable X, in terms of
probability distributions D, indexed by an unknown parameter 6. Note
that the probability distributions D, are defined on the measurable
space in which {X} takes its values, say (R}, B(RY)), where R =
* =2, R (or BY = ¢ _R")and B(RY)is the Borel o-field generated
by the measurable inite dimensional product cylinders of R, while
P is defined on the underlying measurable space (€2, F). Given a model,
an appropriate estimator is usually readily found. The following two
examples illustrate this point.

First, suppose a nodel D = {D,:0e®} is constructed by positing a
family P = {P,:yeI'} in which P is presumed to lie (e.g. assume the
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errors & in (2.1) are iid. N(0,¢%) so that y = ¢) and specifying a
parametsic family of functions s(-, §), fi e B thought to confain W) -) for
some specific parametric value, ie. W(+) = s+, f,) for f, it B. A model
which inzludes (2.2) in this way is

o

:l{--':uf:r—[rﬂufﬂ'l+1:---;ﬁ] = Z JITEI—:'

tE

Then the probability model for {X} can be defined as thecollection of
all probability measures

Dy(B) = P,[w: {5,(.... Vi (@), Vo), Vs s(@),....; B € B,
BeB(RY)
where = (f,7)e® = B x T In economics, the parameters y are often
viewed &5 “nuisance” parameters, while f§ are the “parameters of
interest.”

The model may be correctly specified in the sense that there exists
some @, m © for which the behavior of {X,} in some relevant aspect is
described by Dy, but this need not be the case.

Constiuction of a probability model using this approach allows
specification of the likelihood function for a sample of size r, say

L(Xysen, X080 =dD Jdi, n=12,...
where
Dg(A) = Dg[(Xy,..., X )ed], AeB(Ry)
and D, is absolutely continuous with respect to the o-finite measure p,
forall @in @.
In this situation, a useful estimator is the maximum likelihood
estimator (MLE), obtained by maximizing L, with respect to £.
For example, if we specify that g, is 1.1.d. N(0,¢?) in (2.1) and that the
model for the generation of ¥, implies
T=8Y_ 1+, t=12,...,

then we can construct the maximum likelihood estimator §, as a
solution to the problem

ningn™! Y. [(,—BY,_ o +log ]
=1

where 0 = (f,6) and ® = [—1+¢,1—¢] x [e,&7 '] for som: arbitrarily
small g =0.
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Models may also oe specified implicitly by requiring that particular
moment conditions be satisfied, for example that

Efm(X,,...X;0) =mlx,...,x;0)dDy =0, t=12....

In this case, note that D, need not be uniquely defined, but can itsell be
a collection of probability measures, namely all those which satisfy this
particular moment condition.

Specilically, for the system of implicit nonlinear equations

ud Yo Y1, 2, 0,) = &
suppose that there exist instrumental variables K, such that

-EIJ,{E: ®K)=0,
where & operating on vectors or matrices denotes the Kronecker
product. For exampe, K, might depend on many lagged values of Z,.
Letting

my(fl) = vece(f) @ K,
where

ﬁ:“}} = ul{ }:l ?:' o k] z-|:'| E}I

an estimator can be constructed by finding the value for § which sets

W@ =n""! 21 m ()
as close as possible to zero, for example

6. = argming (&) P, (6),

where P, is a square matrix which may also depend on the data, such as
an estimate of [avar a'/*\l,(8,)] ~ !, where “avar” denotes the asymptotic
covariance matrix. The estimator {f, as just defined is a generalized
method of moments (GMM) estimator (Jorgenson and Laffont 1974;
Gallant 1977; Hansea 1982).

A convenient assumption which allows us to consider these estimators
as well as quite a few others is the [ollowing.

Assumption OP (optimand)
Let ® be a compact subset of B%, ke, For n=1,2,... define the
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optimand @,: Q2 x © —+ H as
Qules, 0) = g0, 8)),

where i (@, 6) = n~ 'l 1 q,(w, ), and

(i) g,:R' — R is continuous on compact subsets of B uniformly in n;

(i) q,:Q % ® — R’ is such that g,(-,8) is measurabe-F/B(R') for each @
in @ and g,(w, * ) is continuous on & almost surely, i.c. for all w in
F.eF, P(F)=1,t=1,2verr O

Together, assumptions DG and OP will allow us (tieorem 2.2 below) to
establish the existence of a sequence of random variables {f,) such
that #, minimizes Q,(+# on ® almost surely (a.s.). Unless otherwise
designated, the probability measure P underlies eény statement about
almost sure behavior. Also, although it is important to treat g, ¥, and
@, as functions on £ % @ it is notationally cumbersame to carry around
either explicit or dummy arguments for elements of Q. Accordingly,
whenever it is convenient and does not detract from rigor, we suppress
these arguments and write g(6), . (6), @[f) in place of g(-8),
W (- @), O, 8). This should cause no confusion.

The maximum likelihood estimator is treated inthis framework with
[ = 1 by setting g, () = —yrand ¢ (0) = L (X,,....X,; 0).

To see how the GMM estimator may be included in this framework,
consider first the situation in which {£,} is a sequence of nonstochastic
matrices, say { £} = {P*}. Then the GMM estimator obtains by setling
gJr) = W' Pxf, and g,(0) = vece (/) ® K, as beore. However, ad-
ditional complications arise in allowing {F,} to be stochastic. To see
this, we must be more explicit about how { P} is constructed. Typically,
P_ can itsell be regarded as tn estimator obtained by minimizing a
suitable objective [unction. For example, we might choose

]
P.=ZZn=n"" !_EJ'Z;Z,

for instruments Z,. This estimator solves the problem

H

;niﬁ Q,.(P) = vec |:r1"1 VD [Z;Z,—P’}Javcc[n" i {E:Z,~F1:|,
£ =1

=]
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Now consider the salution to the expanded problem
Mming . WL (l) Pl (0)+0;,(P)

After a little manipualation, this objective function can be seen to satisly
assumption OP.

When I = k, it istypically possible to choose f, so that W, (0) = 0. In
this case, choice of P only affects the term @, ,(P). This is set to zero by
choosing P = P", 53 that the GMM estimator results. When [ = & (the
case of overidentifying moment conditions), the first term will not be
identically zero for given n, so that adjustments in P which decrease
,{0) Py, (0) more than they increase Q,,(P) can lead to a divergence of
the solution value for P from P If the model is correctly specified
(E(,(8,)) — 0 for some ,€ @) then this effect is irrelevant asymptoti-
cally. However, as Don Andrews (personal communication) has pointed
out, this effect will generally persist when the model is misspecified. In
this case, this embedding procedure fails to give the GMM estimator,
even asymptotically.

These difficulties could be avoided by allowing g, to depend explicitly
on nuisance parameters estimated in some preliminary manner, as in
Burguete, Gallant and Souza (1982), Bates and White (1985), or
Andrews and Fair 1987); unfortunately, the subsequent analysis would
become extremely burdensome notationally. For this reason, our
analysis will leave some pertinent cases untreated. Nevertheless, con-
sistency results continue to hold by replacing estimated nuisance
parameters by ther stochastic limits, Furthermore, in many cases of
interest, the asymptotic distribution of the estimaled nuisance para-
meters is independent of that of the paramelers of interest. In such
cases, asymptotic distribution results also continue to hold with
nuisance parameters replaced by their stochastic limits. Detailed treat-
ment of cases nol falling in these categories is left to other work.
Despite this limitetion, the class of estimators treated remains fairly
broad.

Another limitation of assumption OP lies in the continuity assumed
for g, on ©, and in restricting © to be a compact subset of a (finite
dimensional) Euclidean space. These assumptions are quite convenient
and are satisfied in many applications of interest. For some discussion
of situations in whizh these restrictions are not imposed, see Wooldridge
and White (1985).

In our subsequent analysis, we consider constrained estimators in
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order to study the behavior of standard test statistics under a sequence
of local alternatives, e.g. as solutions to the sequence of problems

ming, a,(0))

where @, = {#e@:h(0) = h},n = 1,2,..., for a specified nonstochastic
sequence {hy}. Theorem 2.2 below establishes the existence of such
constrained estimators for any sequence {@,) of compact subsets of .

In order to establish the existence of our particular extremum
estimators, we make use of the following modification of lemma 2 of
Jennrich (1969).

Lemma 2.1

Let (€, F) be a measurable space, and let © be a compact subset of B~
Let @:60 = @ — @ be such that Q{ -, 0) is measurable-F/8 for each # in @
and Q(tw, ") is continuous for all w in FeF. Then there exists a function
f:Q — © such that #f is measurable-F/B(R#*) and for al win F

Qlow, He)) = infg e, B). o

The difference between this result and that of Jennrizh is that Jennrich
essentially sets F = £, while in the present result F may be any element
of F. This allows us to treat situations arising when (w, -} is continuous
on @ a.s., but not necessarily continuous on @ for al @ in . When 0
satisfies the conditions of this lemma with P(F) = 1, we shall say that ¢
is a “random function continuous on ©@ as” Also note that for
notational convenience we have written B in place of B(H). The
existence result can now be stated.

Theorem 2.2 (existence)

Given assumptions DG and OP, there exists a set FeF with P(F) = |
and for each n = 1,2,... there exist functions §,:Q +® and 7,:Q — ©,,
where @, is any compact subset of @, such that

Q.(w,0(w))= inf Ofw,0) and Q@ w, T w)= inl O,(w,0)
de@ ted,

for all w in F, and f#, and &, are measurable-F/B(R"). o
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The méasurubilit}f of 7, and f, is important because this ensures that 0,
and @, are random variables. Thus, there exist random variables g and
fl. that with probabili:y one minimize the objective function specified by
the optimand assumption OP. The @ set of probability zero for which
0, () does not necessarily minimize @, on @ (8,) is a set on which
Q,(w,*) is not necessarily continuous on @ (®,), so that a minimizer
need not exist. To distinguish our specific estimators from the general
class of extremum esdimators we refer to (, and 0 as “optimization”
estimators.

Given the existence of random variables 0, and #, we next turn our
attention to the issue of consistency, and then to distribution in large
samples.

MATHEMATICAL AFPENDIX

Proof of lemma 2.1

We modify the proo’ of lemma 2 of Jennrich (1969). Let {®,,} be an
increasing sequence cf finite subsets of @ whose limit is dense in @. For
each m there is a measurable function (/,,: @ — @, such that

Qlw, 0,(w)) = infg_Q(w, 0)

for all @ in © Let &, denote the first component of f,. Then
0, = liminl,, /,,, is mzasurable. For each w in F, the set on which Q(w, )
is continuous on ©, there is a subsequence {{f,(w)} of {§ ()} which
converges to a point Fin @ of the form (6,(w), 7,,. .., ). Now

inr[ﬂl,...,ﬂ,}E@Q{w- ﬁlim}s fy,....0y
= Qw,7) = Ilirr§1 Qlew, I, ()

= lim inF@ij(m, 1) = inlg Qfw, ).

| =+ oo

Continuity on © ensures the existence of the first infimum and the first
equality. The last ecuality follows from continuity and the fact that
lim,, . @, is dense in &. Thus

infig, ... aye0 0w, 0,(w), b,,...,8,) = infg Q(w, 0)

for all @ in F. Becaue Q is measurable-F @ B(R")/B (e.g. Border 1984,
jemma 5 here & operating on o-fields denotes the product g-field),
letting
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Clew,0,,05,....0,) = 0w, §,(w),05,...,0)

we have that Q'(-,f) is measurable for all 0 in @, and Q'w,:) is
continuons on @ for all w in ¥, Applying the same argument to Q' as
was applizd to Q gives a measurable real valued function 7, such that

infig,,....00e0 Qlo, b,(a), O3(w), 0s,...,0,) = nfg Q(w, 0)

for all win F. Continuing in this manner produces measurable real
valued fuactions f,,..., 0, suck that for all win F

Clw, 0, (w),..., O0fw)) = infg Q(w, 6).
Thus # =(f,,...,8,) is measurable, and for all w in F

Clew, () = infg Q(w,0). 0

Proofof tieorem 2.2

We apply lemma 2.1. By assumption DG, (£, F) is : measurable space,
and by essumption, ® and ®, are compact subsets of R*. Given
assumptien OP, it follows from theorem 13.3 of Bilingsley (1979) that
the composition of functions 2,(-, ) = g, ,(*. 0 is measurable-F/B
for each # in ®. Given assumation OP(ii), for each ¢ there exists a set
F,eF (by completeness) with PLF,] = 1, such tha for each w in F,
qew, ) 1s continuous on @, Define F = (U2, FIF = M2, F,. Since F}
is a set of probability zero, so is L2 | F{. Thus P[F] = 1. Choose we F.
Since @, & a composition of functions continuous on © (hence @) for
each such w, it follows that Q,(w, - ) is continuous en @ for all w in F.
Thus, the conditions of lemma 2.1 are satisfied so that for each
n=1,2,. . there exist measurable functions #:Q - ® and !}n:ﬂ — @,
measurable such that

G, 0,(w) = infg Q,(0,0) and Q,(w,0,(»))=infg, O,(w,0)
forallwin F, P(F) = 1. o
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