3 Consistency of Optimizaticn
Estimators

Given the existence of {, and 7, we now concern ourselves with their
consistency propertics. We [ollow the classical approach of Wald
(1949). The essential underlying intuition is that if @,(f) tends a.s. to
some real valued function, say (,(f), then one might expect that
would tend as. to 8%, the solution to the problem

ming O, ().

This intuition is valid under appropriate regularty conditions. Con-
venient conditions in the present context are the uniform convergence
on @ as. of 0,(f) to §,(0), and the identifiable uniqueness of the
minimizer of §(#). For convenience we state the definitions of these
concepts.

Definition 3.1 (uniform convergence on ©, u.5.)

Given (£, F, P) and a compact set © = @ let {0,:Qx @ — B} be a
sequence of random functions continuous on © as Let {0,:@ — R} be
a sequence of functions. Then Q (1) — 0 (#) — 0 a.s. sniformly on © if and
only il there exists F e F, P(F) = | such that given any £ = 0, for each @
in F there exists an integer N(w,¢) < co such tha: for all n > N(w, &),

sUpg JQM[“"! B} TE Q-nf.'g]l =& e 5Upg |Qn{ s ﬂj — Qn[ﬂ} —+0as. d

The uniformity of convergence in this definition arises from the fact that
N{w, £) does not depend on 6. In this and similar coatexts, an overbar is
used to denote the nonstochastic function to which the stochastic
function tends. Unless otherwise noted, all limits are taken as n — co.

Our definition of identifiable uniqueness is an extension of the
concepts employed by Amemiya (1973) and Domowitz and White
(1982).
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Definition 3.2 (identtfiable uniqueness)

Let J,:© — R be centinuous on ©, a compact subset of B, n=1,2,...,
and let {@,} be a sejuence of compact subsets of ©. Suppose for each n
that 6 minimizes 0,(f) on ©,. Let §3(¢) be an open sphere in &* centered
at # with fixed radus & > 0. For each n = 1,2,... define the neighbor-
hood #(e) = Si(e) N @, with compact complement #];(e)° in @, The
sequence of minimizers {5} is said to be identifiably unique on {@,} if
and only il either [o- alle = 0, Hi(e)* is empty, or foralle > 0

lim inf [ min QH{E}}—Q,,{Eﬁ}J = (. 1

n—s o | Belper

This condition rules out the possibility that §, might become flatter and
flatter in a neightorhood of @ as n— oo and also rules out the
possibility that some other sequence with each element taking values in
©®, might yield vaues of the objective function approaching (,(67)
arbitrarily closely as n — oo,

Using this definition, we can state the following extension of the
consistency result ol Domowitz and White (1982).

Theorem 3.3
Given (£, F,P) anc a compact set @ = 8, let 0,:QxO - R be a
random function continuous on ® as, n=1,2,... . Let {©,} be a

sequence of compact subsets of @, and let §, be a measurable solution
to the problem

ming (¢, n=12,....

Suppose there exiits {0,:0 — B} such that Q. (6)—0,8) —0 as.
uniformly on @. If {(Q,} has identifiably unique minimizers {6} on
[®,)},thend,— @ —0a5. o

Note that the resul: applies to {1, by setting ®, = @ for all n. Assump-
tions DG and OP are sufficient to ensure the measurability and
continuity requirements of this theorem. We proceed by finding
primitive conditions on g, and the probability measure P which will
ensure the existence of [} with the specified properties. The following
version of 4 lemma ol Bates and White (1985) simplifies this exercise lor
optimands of the [o-m specified in assumption OP.
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Lemma 3.4

For leM, let {g,:R'— R} be continuous on compact subsets of &'
uniformly in n, and given a compact set @ = B* let {i,:Qx © — R’} be
a sequence of random lunctions continuous on & &5 Suppose that lor
each n= 1,2,... there exists f,:©@ — R’ continuous on © such that
() — i (@) — 0 a.s. uniformly on @. Also suppose that for all £ in ©,
.(f) is interior ta ¥, a compact subset of &, uniformly in n. Then
gl (D) — g, (0) = 0 as. uniformly on ©. Further, if i, is continuous
on @ uniformly in n, then g,=1, is continuous on @ uniformly in
noo

Recall that we earlier defined

VO =" Y. 40,

This lemma implies that it will suffice to find () such that v (8)—
Wr,(8) — 0 a.s. uniformly on @, because then we canset J,(0) = g.(iF,(9))
and apply theorem 3.3 to obtain consistency.

A convenient way of finding such a sequence {1}, is to make use of a
uniform law of large numbers (ULLMN), as do Le Cam (1953) and
Jennrich (1969). Essentially, the ULLN ensures thaty (01)— E{ir, (7)) — 0
a5 uniformly on @, so that we may set , = E(i.). Hence we require a
uniform law of large numbers [or dependent hetercgeneous sequences.
Domowitz and White (1982} and Bates and White [1985) use a ULLN
for dependent heterogeneous sequences derived using an approach of
Hoadley (1971), who gives a ULLN for independent heterogeneous
sequences. The ULLN of Domowilz and White (1932) has a number of
drawbacks, however, First, although it does allow lor dependence, the
dependence is restricted in that only a finite number of lags can appear
in the summands g,(#!). Second, and more seriously, it has recently been
pointed out independently by Andrews (1986) and Potscher and Prucha
(1986) that the continuity conditions of Domowitz and White (that g, be
continuous on @ uniformly in t, as.) are extrenely restrictive. As
Andrews (1986) and Potscher and Prucha (19861 demonstrate, this
essentially requires that for each 0 the summands g,(7) must be bounded
a.s., a very undesirable restriction.

Andrews (1986) and Potscher and Prucha (198) provide different
ULLNs which eliminate the need for this undesirable continuity
condition, and which yield ULLNs applicable to thz case of dependent
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heterdgeneous processes, Either approach could be used here. Because
of its weaker requirements on how g, depends on the data, we use
Andrews's (1986) approach to derive a ULLN for heterogencous
dependent processe:. The results given below are very slight modifica-
tions of those of Ancrews. We require the lollowing definition.

Definition 3.5 (almos: surely Lipschitz-L,)

Let (@, o) be a sepaable metric space. The sequence {g,:Q x @ — B} is
defined to be almast surely Lipschitz-L, an @ il and only if for each # in
© g, -, 8) 15 measursble-F, t = 1,2,... and for each (" in @ there exist a
constant 8% > 0, functions L7 :0 — B™ measurable-F/B(R ™), and lunc-
tionsal: B — BT, ¢(0) = 0, &(5) | 0as & — 0 such that either

(i) @(d) =sup,af(d)<co Tor all 0 <d < @F)]I0 as & -0, and
fn= ' Er_ E[L7]}is O(1); or

(ii) For some p = 1 a%(8) = sup,[n~ ' Ef. ,a%(8)"]'" < o for all 0 <
&< 0%, @(3) | 0as 6 — 0,and {n~ ' T, (E[LEP~ 1) is O(1);

and for all @ in 7°(5°) = {Ae @:p(0, 0°) < 5°)
la(6)—q,(8°) < Lia7[p(8.6°)], t=12,... as. O

The terminology “alnost surely Lipschitz-L," conveys the idea that the
Lipschitz condition above holds almost surely, and that the Lipschitz
functions satisly a restriction on the average of their L, norms as
imposed in condition 3.5(i) or (ii). This condition implies that g, is a
random function coatinuous on @. It is this Lipschitz condition which
replaces the undesirable requirement that g,(-) is continuous on ©
uniformly in r, a.s. Potscher and Prucha (1986) relax this Lipschitz
condilion at the expense of joint continuity of g, on the data and
parameters. This alternative may prove useful in specific instances, but
we do not pursue this here.

To appreciate the content of the Lipschitz condition, consider the
squared residual for the AR{1) model of {2.1),

Qr{E} = f};_?};— 1]2.
Now
|q8)—q,(0°) = [(0— "N O+ 0°) Y7, — 20— )XY, |
< |0—| |0+ 8Y 7 | +28—6° | Y-yl
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Because ® = [ —1+¢, 1 —&] implies [0+ 0°] < 2, we have
l9.0) —q (87 < QYE., +2/%Y,_ )0 —6°).

This suggests choosing Ly = 2Y2 , +2|Y,Y,_,| a1d a® as the identity
function for all ¢ with p(@, 8°) = |0 —6°). Thus, the _ipschitz condition is
always satisfied. Further, if E|¥)* <A < a0 for all 1, then the L
condition of definition 3.5(i) is also satisfied:

limsupn™! ¥ E(L})
T =+ 00 (I |

=limsupn="' } 2E|Y,_ *+n~' ¥ 2E|VY,_,|
r= r=1

Fl =+ 00y

L L
< limsupn™" 3 2E|Y,_\*+n~! ) 2BV YPER)Y_ 12
| p

l—+ 00

< 4A < oo,

This verifies that q,(6) = (Y,—0Y,_,)* is almost surdy Lipschitz-L i

Andrews's (1986) generic uniform law of large numbers is proven
along the lines of Hoadley's (1971) uniform law of large numbers.
Central to this result is the requirement that the supremum and
infimum over an appropriate neighborhood of the function being
averaged obey the law of large numbers.

Definition 3.6 (strong law of large numbers locally)

Let (©,p) be a separable metric space, and let q:0x0 R be a
random function continuous on @ as., t = IEFE
For given @ in ® and § > 0, define the random variables

7(0) = supys qfl) and  g7(6) = infyps 0,(6)
where 7%(0) = {6e@:p(0,0°) < §}. We say that {G(8)} satisfies the
strong law of large numbers locally at ° if and only If there exists 6° > 0

(depending on 6°) such that for all 0 <g <o, n! zr_ [F18)—
E(gi(0))]] — 0as., and similacly for {¢%(8)}. o

Note that in the present context, the overbar and underbar denote
supremum and infimum rather than stochastic limits. Our version of
Andrews’s uniform law of large numbers is the following,
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Th:.;arem 3.7 (uniferm law of large numbers I)
Given (£2, F, P) and a compact metric space (@, p), suppose that

(i) {q,} is almost surely Lipschitz-L, on @; and
(i) {gr(é)} and {g{{6)} satisfy the strong law of large numbers locally at
fi" for all #°in 8,

Then

(8) §()=n"1Z_ E(g(-))is continuous on @ uniformly in n; and
(b) W (6)— 1 (6) =0 as. uniformly on ©. m|

Although this thecrem delivers the desired conclusion, condition 3.7(11),
which imposes the strong law of large numbers locally, is too abstract
for our immediate purposes. We seek more primitive conditions on i,
and the underlying stochastic processes which will ensure that 3.7(ii)
holds but which arz more interpretable. We accomplish this by making
use of laws of largenumbers for dependent heterogeneous processes due
to McLeish (1975z2). These results require additional definitions and
notation which will permit a precise discussion of the degree of
allowable dependence.

The first of these definitions relates to the dependence of the
underlying { ¥} precess.

Definition 3.8 (mixirg)
Let F, = a(V,,..., ¥), and define the mixing coefficients

Pm = SUPAUP(Fer |, Gefr .- piF > 0) | P(GIF)— P(G)],
U = SUPSIPIFer , Gern IP(G M F)—P(G)P(F). o

Both ¢, and «,, measure the amount of dependence between events
involving ¥, separaled by at least m time periods. If either ¢, or a,, tend
to zero as m — oo, then { ¥} exhibits a form of asymptotic independence.
Processes with a,, — 0 as m — oo were introduced by Rosenblatt (1956),
who termed them “strong mixing,” while sequences with ¢, —0 as
m —+ co, termed “uriform mixing,” are discussed by Billingsley (1968},
For convenience, ve refer to such processes as “w-mixing” or “g-
mixing” The term “mixing” refers to a physical analogy in which the
location of a partice in a liquid or gaseous mixture becomes less and
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less dependent on its initial position as time progresses. For further
discussion, sce Rosenblatt (1972;1978) and White (1984), Although
the important early work on mixing processes (e.g. Davydov 1968;
Ibragimov and Linnik 1971) often imposed staticnarity on the under-
lying processes, this is only convenient but not necessary. Mixing
processes are useful here precisely because they allow for considerable
time dependence without necessarily restricting the possible hetero-
geneity of the process.

For our purposes, it is necessary to describe ths time dependence in
terms of the rate at which ¢ or «, approach zero. We adopt the
following definition of the size of a sequence, a stronger version of a
definition given originally by McLeish (1975a).

Definition 3.9 (size)
ol

Suppose ¢,, = O(m*) for all A < —a. Then ¢, is said to be of size —a,
and similarly for &, o

The associated process { ¥} is said ta be “¢-mixing of size —a” when ¢,
is of size —a or “z-mixing of size —a" when «, is of size —a. The
definition will apply to any sequence indexed by m

For example, Ibragimoy and Linnik (1971) stow that a Gaussian
autoregressive moving average ARMA(p, g) process (p,ge V) hasa,, — 0
but not ¢, — 0, and that, as m — oo, «,, approaches zero exponentially
fast. Thus, Gaussian ARMA(p, ) processes are g-mixing of size —a for
aarbitrary large. Similar results for non-Gaussian ARMA(p, ) processes
under appropriate conditions have been obtained by Pham and Tran
(1980).

One of the first authors to make extensive use cf mixing processes in
time series analysis was Hannan (1970) in his infliential book. Because
of the convenience and considerable dependence waich mixing processes
allow, they have subsequently found extensive application in time series
analysis.

Perhaps the most convenient property of mixing processes is that
measurable functions of mixing processes are themselves mixing, pro-
vided that the function depends on only a finite number of lagged values
of the mixing process. Here, however, we wish to allow W] to depend on
the entire history of the underlying process V. Thus, the processes of
immediate inlerest are not necessarily mixing,
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Further, even some simple AR(1) processes can fail to be either
gh-mixing or g-mixing (Andrews 1984). For these reasons, it will not
suffice to consider only mixing processes. Nevertheless, it is possible to
obtain useful results by considering functions of a possibly infinite
history of an underlying mixing process, provided that one appro-
priately controls the extent to which the function considered depends
on the distant past or luture of the underlying process.

The basis for these results is “mixingale” theory, introduced in a
fundamental paper ol McLeish (1975a). A mixingale is an asymptotic
analogue of a martingale. Letting the L, norm of a random variable Z
be denoted

21|, = E*"|2)P,

we have the following formal definition.

Definition 3.10 (mixingale)

Given (,F, P), let {Z_:Q — B} be a double array measurable-F/B, with
E(Zi) < oo, n, t=1,2,... . Let {F'} be an increasing sequence of
sub-g-algebras of F. Then {Z,,, F'} is a mixingale il and only if there exist
sequences of nonnegatve real constants {¢,,} and {{,,} such that {,, =0
asm=—coandforallnt=1,2,...andallm=0,1,...,

(1) |E(ZadF ™2 < Lo
(i) [|Z—E(ZuF "Nl < Ly sl 0

In this definition, we consider a double array {Z,,}. This covers the case
of singly indexed sequences {Z,} which have been the focus of interest
so far by setting Z,=Z,, for all n and ¢ When the n index is
unnecessary, we simply drop it. The use of double arrays is essential
later for establishing the asymptotic normality of the estimators.

When Z,, is measurable-F',-so that {Z,, F'} is an adapted stochastic
sequence, then condition 3.10(ii) holds automatically. Condition 3.10(i)
then provides the definition with its force. Condition 3.10(i) implics
E(Z.) =0, and also taat as we condition on information in the more
and more distant past (F'~") then the conditional expectation of Z,
approaches its unconditional expeclation. Thus, condition 3.10(1) is
essentially a memory zondition, and the rate at which £, poes to zero
determines the rate of memory decay. As with ¢, and «,,, we say that {,,
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is of size —a il £, = O(m?) for all < —a. In this circumstance, {Z,} is
said to be a mixingale of size —a.

The double array of constants {c,,} generally acts to provide a useful
normalization, In many cases ¢, is chosen as ||Z,|, for some r = 2.

When Z,, is not measurable-F', then condition 3.10(ii) acts to ensure
that £, is eventually “almost” measurable with respect to F'™™ [or m
sufficiently large. When F is generated by the entire history of a
sequence of random variables {1/}, condition 3.10(ii) can thus be
thought of as ensuring that Z, is essentially a junclion of the entire
sequence { V.

Recently, Andrews (1987) has proposed a generalization of definition
3.10 based on replacing || «||; with ||+ ||, r = 1. Using the choice r = 1,
Andrews obtains some very general and useful weak laws of large
numbers for double arrays.

Here we focus on strong laws of large numbers given by McLeish
(1975a). The following inequality plays a central rele.

Theorem 3.11 (McLeish's inequality)

Let {Z,,} be a mixingale of size —1/2 and let §,; = /., Z,,. Then there
is a finite constant K depending only on {{,} suchthat

I
E(mnx Sfj) < K(E c:f,),
j=l =1

If ¢, = 0forall m, then

K=16 Li;. (iﬂ L 1) F ”T, o

This result allows the following law of large numbers for mixingale
processes to be established (McLeish 1975a).

Corollary 3.12
Let {Z,} be a mixingale of size —1/2 with 22, ¢lft* < 0. Then
i3 Z;»0as D

This law of large numbers is the key to verifying that condition 3.7(ii) is
satisfied. To apply it, we establish that certain functions of infinite
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histories of mixing processes are mixingales of size —1/2. For this we
use the following definition, where we adopt the notation

ENrMC Y= B[, Bt sV V),

Definition 3.13 (near epoch dependence)

(2) Let{Z,:Q - B} beadoublearray measurable-F/B with E(Z2) < o,
nt=12,... .Then {Z} is near epoch dependent on {V,} of size —a
il and only if

by = SUp, SUp, ||Z,1;—E:1mzn|]”1
is ol size —a. O

The quantity measired by the norm || - ||5 in the definition of v, is the
root mean squared forecast error when Z,, is predicted by E} Z7(Z ), the
minimum mean squared error (m.s.e.) predictor of Z_, based on the
information contaited in ¥,_ ..., ¥, .. Taking the supremum over n
and t gives a measire of the worst such forecast error. Note that the
forecast will improve as m increases, i.e. as more and more information
is used in forecasting, so that v, will never increase as m — w0, Il v,
tends to zero at an ippropriate rate (i.e. v,, = O(m*) for all L < —a) then
£ depends essentilly on the recent epoch (past and/or present and
future of ¥) and does not depend “too much” on the distant past or
future. IT Z,, depends on only a finite number of lags of ¥, (ie. Z,, is
measurable-F;!| for some | < o) then Z,, is near epoch dependent of
any size —a < 0, sirce v, = O for all m > [. The more negative —a s, the
more quickly the dependence of £, on past and future values of ¥, dies
out. The near epoch dependence property was introduced by Billingsley
(1968) and has been used by McLeish (19735a; 1975b) and Bierens (1983)
among others. It is -elated to the concept of stochastic stability used by
Bierens (1981). We use the term "near epoch dependence” to distinguish
it [rom this concep of stochastic stability, and because it seems more
suggestive ol its function in the present context than the term “stochastic
stability.”

Anl example of ¢ near epoch dependent process less trivial than
independent or finile moving average processes is the AR(1) process of
(2.1). Letting &, = O for t < 0, we have from (2.2) that for given t

o
h=2Z,= ZUH;'E:-r'
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Let Fi2p = o(g,— .-+, &4 mh and suppose that for some p = 2, |lgll, <
A < oo, Itfollows that Elg| < A. Because |0,| < 1, itfollows that

Y Elgs_ <A Y |0, =AN—10,) < o
=0 T=o

so that X2 ,E|fe_.| converges, implying th: convergence of
e e as forall t =1,2,... (e.g. White 1984, proposition 3.52).
Further, for some p = 2 and all ¢

o
656 —ollp = X 10l7llee -l < A/(1—[0,]) < o0
=10

[~a

=0

so that forall ¢

Plbie
] < A1—10,)

||};|[,,=[E Y s

by the Minkowski inequality for infinite sums (e.g. White 1984, exercise
3.53). In particular, we have E(Y]) < co,t = 1,2,... .

To see that Y, is near epoch dependent on &, we observe that because
E!*™¥) is the minimum m.s.e. predictor of ¥, given FX7,

|, —Em N, < ||%— Eﬁﬂznmnz.
MNow
%= el = _ZH 0|l

= |65 Z, 0ot —m—llz

"‘;‘;‘- |ﬂd|ﬂ'l Zj, |H|;|It||ﬂr—n1—:”1
< [8,1" 1AL —16,]),
where the first inequality is Minkowski's and the second follows
because |||, < Aand || < L. It follows that
Uy = SUp, sup, || —EZNY,
< |6, |" AL —6,)) = 0 asm - co.

Thus | ¥;} as generated by an AR(1) process is near epoch dependent on

i g —p—— - ——————
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{&}, and in particuar v, is O(m’) for 4 < —a, where a is arbitrarily
large. In fact, ARMA processes of finite order with zeros lying outside
the unit circle can amilarly be shown to be near epoch dependent of
arbitrarily large sizz, provided the innovations satisfy moment con-
ditions similar to these imposed here. Infinite moving average pProcesses
can also be shown to be near epoch dependent under appropriate mild
conditions on the moving average weights (see, for example, Wooldridge
and White 1987, example 3.3). Note that we need not impose station-
arity, but instead may allow a substantial amount of heterogeneity.
Also note that becawse near epoch dependence is only a measure of how
1; depends on g, we need place no conditions here on the dependence
propertics of &, Later, however, we will require that {¢} be a mixing
process.

A more complicalzd example of a near epoch dependent process is a
process { ¥} generated by the nonlinear implicit equations

u(h, Y-, Z,0,) = &,
,=0, =0, Z,=0, t<0.

t=12:.

Ifthis process is to generate a unique output { ¥} for given {g, Z,}, then
there must exist a recuced form

Yi=fe. Y1, Z2:0,)

Suppose that the derivative of fi(e, y, z;0) with respect to each of its
arguments exists and that f is with probability 1 a contraction
mapping with respec: to its second argument, i.e.

|{a."aa}r,}_lr‘il{'ﬁr:l };— ljzrl Gn}l 5 d = .I;. = ].1,21 i

For this application, we set ¥, = (g, Z,), and we wish to show that { ¥} is
near epoch dependent on {1},

We define a predicior for ¥, in the following way. Let ¥, = 0fort < 0
and

?rE.fI[D! ?:—IHD;G:;-L E=J121... 2
Then set
?;Il' = ?;::

Yie=fle. Y5 1, Z26,), max(r—m0)<t<Tt.

= max{t—m,0)

Note that for all ¢, T we have that ¥}, is measurable-Ft+ 7,
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By Taylor's theorens, there are intermediate values &, ¥,_, and Z,
such thatfort = 0

Y= T = | filen Yo 1 2, 0.)— £(0, ¥,_,, 0;0,)]
< |(@/Be) filE, Y, Z; 0.0,
+(8/0y) fiE, ¥ 1 Z, 00X, — ¥,y
+(0/02) fi(, ¥, 1, Z,,0,)Z))
< Filel+R1Y - — B |+ FZ)
<dY - =Y+ File| + Fj|Z|

with probability | and with F7, Ff, and F? defined in theobvious way as
the -andom variables which are the absolute values of derivatives of f,
evaluated at the intermediate values. Proceeding recursively, we have

ITi—?.I = dlr}:—z“ﬁvz[+d{Ff—1!5r—1|+‘F::—||z:-||]'
+ FﬂErH‘FfFEJ

1—1
S A =T 1+ ) dUF;_ Jor- |+ Fi_|Z,..])
c= i

P=1
= Y d(F Jo= 4+ F- )2, ).
=

Form = 0 and t —m = 0, the same type of argument yields
%= Y = Ll Y13 Z5.0)— filen ¥oa= 10 Zi )
<I@/on) filen Y- 1 Zi O Yy = Vi)
SdlY =V
SUDASNES G

=d?| Y- — Tl

i
<d"
T
where the last inequality obtains by substituting the boind for |¥,— ¥
obtained previously. For t —m < 0 we have

-2

1
AF gy elbi— el + Fi | 2 )

it

|Y, =YL, |=d"|Y,— Y] =0

Lt
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In either event, we kave that

¥ —E2RCM2 < 1Y, — Fill
r=m—1

ﬁ {'!Im Z‘L\ I':“-I:”'F;:—rJ1—:'|‘f‘;l—r11' '|:|I ”1

! +“FE-—M_1:[ZI‘—?|1—'I| HZ

If we assume that ||y | I[P 7. 7+ 1 SO b S— I W 7
formly bounded, it follows immediately that

U = SUP, sUP, || ¥, — L2 (K1,
= d"A—-0 asm— oo,

Thus {¥} is near epoch dependent on {¥i} when generated by a
nonlinear contraction mapping, and v, is of size —a for a arbitrarily
large.

In the next chapier, we consider [urther examples of near epoch
dependent processes and provide a number of results useful in mani-
pulating these proceses.

We now establish that near epoch dependent functions of mixing
processes are mixingzles of size — 1/2, provided that the sizes of the near
epoch dependence and of the mixing are properly controlled. Our
argument follows that of McLeish (19754, theorem ).

Lemma 3.14

Let {Z,} be a doubl: array such that IZ ]|, < oo for some r = 2 and
E(Z,) =0,n,t = 1,2,..., and suppose {Z,} is near epoch dependent on
{¥} of size —a, where {V} is a mixing process with ¢, of size
—arf(r—1), r= 2 or a, of size —2ar{(r—12), r> 2. Then {Z.} is a
mixingale of size —:;.rwilh Cy = max(||Z,]l,1) and [, = 2¢ﬂn}§ ik

U[m/2], O r;'m=5.:rﬂﬁ,f]]f'+ Ulm2], Where [m/2] is the integer part of
mf2, O

This result makes it straightforward to establish the following law of
large numbers for near epoch dependent sequences of functions of
mixing processes.

Theorem 3.15 (McLeish 1975a, theorem 3.1)

Suppose {Z,} has 2 ||Z,|12/t* < oo for somer = 2, E(Z,) = 0,and {Z,}
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is near epoch dependent on (¥} of size —1/2, where {¥;} is a mixing
process with ¢, of size —rf(2r—2), r = 2 or o, ol size —r/(r—2),r > 2
Thenn 'XE}_,Z,—+0as. O

In most of our applications, we are concerned with functions of mixing
processes which depend on a parameter vector. In order to handle such
situations, we extend the definition of near epoch dependence in the
following way.

Definition 3.13 (near epoch dependence; continued)

(b) Let(©, p) be a separable metric space and suppose f,,:Q0x © — R is
a random function continuous on ® a.s., n, ¢ = 1.2,... . The double
array { .} is near epoch dependent on [ V;} of size —a on (0, p) il and
only if for each #° in @ there exists 6° > 0 such that the double

arrays

Fadd) = supye full)
and

L ad8) = infyes f.0)

(recall n°(8) = {#eO:p(0,0°) < &}) are near epoch dependent on
{V;}ofsize —aforall0<d<d°. O

This definition provides just the right structure on f, to use theorem
3.15 to verify condition 3.7(ii).

As in the case in which no parameters are involved, { f,,} will be near
epoch dependent whenever f,, depends on only a finite number of
lagged values of ¥,. Of course f,, may also depend on the entire history
of V. In the next chapter we provide some further technical results
which allow one to establish near epoch dependence on (@, p). For
example, we discuss conditions under which the squared residuals of the
AR(1) model (Y,—8Y,_,)* are near epoch dependent on (@, p) where
B =[—1+¢§1—¢].

Theorem 3.15 imposes both memory conditions and moment con-
ditions in establishing a law of large numbers. As wz have appropriate
concepts to specify precisely the appropriate memory conditions, we
now turn our allention to appropriate specification of the moment
conditions. We use the following definition.
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Deﬁ;mima 3.16 (r-irtegrability, r-domination)

(a) Let D,:Q— R be measurable-F/B, n, t=1,2,... . Then D, is
r-integrable uniformly in n, t if and only if |0 |, = A < o forr = 0,
i B e e

(b} Let f,,:Qx ® - R be such that f,(, #) is measurable-F/B for each
0'in @. Then f,(0) is r-dominated on © uniformly in n, ¢ if and only if
there exists D, Q — H such that | f,(0)] < D, forall #in ® and D, is
r-integrable unformly inn,t. 0

Dominating functions D, of the sort posited in definition 3.16(b) are a
common device wed in establishing uniform laws of large numbers
(e.g. Le Cam 1953 Hoadley 1971). To illustrate, consider the squared
residual

L) = | Y—0%,_ 2

< (|¥]410]|Y,_ )

= %2 4+200) | %Y, |+ 6012 Y, 2
< | VRN Y | +HY o

where we use the [ast that |] < 1. Setting D,,, = | Y2+ 2|¥.Y,_ || +|%_ |4
it is straightforward to obtain

”Dn:r!lr = I! j’izllr-l- I“ }‘;}:— |.”r+” }rf-— 1”r
0] ]| [ T S 1T Y[
< 4821 —10,)2 < o

for r = p/2. Thus, £,(f)is r = p/2-dominated on © uniformly in n,t.

By imposing domination conditions of this sort on g, (as we do
below), we will be ruling out certain cases in which the reduced form for
Y, implies trending or explosive behavior in Y. This is immediately
apparent in the exemple just given, where considerable use is made of
the fact that |0l,| <1. Because nonlinear dynamic processes can easily
generate such behavior, the domination conditions imposed here will
rule out this very important class of nonlinear processes. The reader
should bear this serious limitation in mind. We focus on the present
case for simplicity. However, it appears that with a suitably extended
definition of near ¢poch dependence and an appropriately modified
ULLN at least condstency results for models of explosive processes can
be established.

Bearing this limilation in mind, we now state a result providing more
primitive condition: which ensure that condition 3.7(ii) is satisfied.
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Letmma 3.17

Given (£L F, P) and a separable metric space (@, p), let ¢;2x® — R be
a rendom [unetion continuous on @ as. = 1,2, .., and let { ¥} be a
mixing sequence with either ¢, of size —r/(2r—2), r =2 or «,, of size
—rf{r—2), r = 2. Suppose that either

(i) a) Forsomen > 0, q(0) is r/2+4n-dominated on & uniformly in t;
and
b} There exists me W such that q,(6) is measurable-F*™/B for all §
in®, ¢t=1,2,...;:0r
(if) ‘a) g,(ff) s r-dominated on @ uniformly in £; and
ib) {q,{0)} is near epoch dependent on { ¥} of size —1/2 on (@, p).

Thea {47(d)} and {g/(é)} satisfy the strong law of arge numbers
locally-i¥ for all (" in @, |

An mteresting feature of this result is that il g, depends enly on a finite
history of { ¥/}, then the domination conditions are only essentially half
as srong as those needed when g, is allowed to depend on the entire
history of { ¥;}.

We now have all the necessary ingredients to state the following
unifarm law of large numbers.

Thearem 318 (uniform law of large numbers 11)

Given (€, F, P) and a compact set ® < &*, let {V;} be a mixing process

with ¢, ol size —r/(2r—2),r = 2 or a,, ol size —r/(r—2),~ > 2. Suppose

that .

(1) ;0% @ — Bisas, Lipschilz-L, on @, ¢ = 1,2,...; and either

(i) (a) Forsome y =0, g(0) is r/2+ y-dominated on @ uniformly in t;
and

{b) There exists me A/ such that ¢,(f) is measurable-F *™/B for all 0

met="1,2..;

or

(iii) ‘a) g,0)is r-dominated on & uniformly in t; and
b} {q,(0)} is near epoch dependent on { ¥} of size — /2 on (@, p).

Then
(a) y(+)=n"'Zl  E(g(-)) is continuous on @ uniformly in m; and

T — = — -
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(b) Y (@)=, (6) — Das. uniformlyon ®. o

This result provides relatively primitive conditions which ensure that
the assumptions of kmma 3.4 are satisfied. It provides a version of a
ULLN given by Anirews (1986) which removes the undesirable con-
tinuity conditions ol Domowitz and White (1982) or Bates and White
(1985). It also extencs this result to near epoch dependent functions of
mixing processes. This result- now allows us to establish consistency
using theorem 3.3. Accordingly, we add conditions which will allow
application of theorem 3.18 to the problem of interest here. Because we
are concerned primacily with the case in which g¢,(f) may depend on an
infinite history of {V}, we only state conditions ensuring  3.18(iii)
explicitly. Condition: ensuring 3.18(ii) are left implicit.
First, we impose the mixing conditions on { ¥},

Assumption MX (mixing)

(¥} is a mixing sequence such that either ¢, is of size —r/(2r — 2, r=2
or o, is of size —r/(r—2) withr = 2. o

Next we impose the snoothness condition on g,.
Assumption SM (smodthness)

(i) {4.} is almost surely Lipschitz-L, on ®. o
The domination condition is the following.

Assumption DM (domination)

The elements of ¢,(0) are r-dominated on @ uniformly in ¢ = 1,2,...,
r=2 o

Among other things, this allows us to define
Vo) =n"1 Y E(q(0),
=1

by ensuring that the sxpectations exist. It also rules out trending or
explosive functions g,.
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MNext, we impose the near epoch dependence condition.

Assumption NE (near epoch dependence)

(i) The elements of {4(f})} are near epoch depencent on {¥} of size
—1/2 on (@, p), where p is any convenient norm on X, O

The conditions now available ensure that i (#)— % (#) — Oa.s. uniformly
on ©. The conditions placed on g, in assumption OP ensure the
applicability of lemma 3.4, yielding the uniform convergence to zero a.s.
of @,(¢)— 0,(0). Consistency follows [rom theorem 3.3 once the following
identification condition is imposed.

Assumption 1D (identification)

When the functions @, = g, =\, exist, n = 1,2,..., tae sequence {{J,(0)}
has identifiably unique minimizers {8} on © and identifiably unique
minimizers {#} on {®,}. O

The desired consistency result can now be stated.

Theorem 3.19 (consistency)

Given assumptions DG, OP, MX, SM, DM, NE, end ID, i, —#* -0
as.andf —02=0as, o

Thus we have a general consistency result for a fuirly broad class of
constrained and unconstrained estimators for a variety of possibly
misspecified models of heterogeneous dependent processes. In the next
chapter we discuss some useful results pertaining to the near epoch
dependence property, and use these results to diccuss further some
interesting special cases of theorem 3.19.

MATHEMATICAL APPENDIX

Proof af theorem 3.3
Let p denote the Euclidean norm and let (s) = {0:p(0,0°) < &} N @,

—rpara—
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When #;(c)" is empty for all & > 0, the result is trivial, so suppose that
11(e)° is non-empty. Because {#7} is identifiably unique on 10,1, given
& > 0 there exists N,(g) < oo such that

inf [ min Qn{f?]l-—ﬁ.iﬂﬂllj = dfe) > 0.
nz N0 Loeyer

Note that 8(z) is nendecreasing in ¢, so that if & decreases, é(e) cannot
increase,

Because Q,(0)—0,(0) — 0 as. uniformly on © there exists F,eF,
P(Fy) = 1 such thatfor each w in F| and all n > N (e, §(z))

|Qalew, B) —0,(G)] < o(e)/2,
or
Qn{mr H:J = Qn{ﬂ:] F 5{.!:},:“2

Given assumptions DG and OP, it follows from theorem 2.2 that there
exists f, and Fy e F, P(F,) = 1 such that for all @ in F,, 0,(, fw)) <
Q.(e, 07), because 8, minimizes O (w,d) on ©,, as. Thus, or all @ in
F=F NF,;PF)=1landalln > N (w, i)

Qn{m1 gn{m}} = gniﬂ::l -+ ‘5{‘:‘}!"2
Forallwin Fand n > N y(w, d(e)) we also have §,(T (w)) < @, (o, F () +
dle)/2 so that

Ol () < 06+ o(e);
or

Qﬂ[gn(w}}_én{ﬁ:] = éfﬁ}

forall win F and n > N (o, §(¢)). It follows that 7 (w)e 1) for all @ in
Fand n > max(N (1), N (e, 8(g)). Because ¢ is arbitrary @, (w)— @ — 0
forall win F, Because P(F) = 1, it follows that §,— 82— 0as. 0O

Proof of lemma 3.4

Bates and White (1985, lemma 2.4) show that g,(,(0)) — g, (F () — O
a.s. uniformly on ©. We show that g, « iJ, is continuous on @ uniformly
in n when 1, is coniinuous on @ uniformly in n. Let d be Euclidean
norm on #'. Because g, is continuous on a compact set ¥ uniformly in
n, for every ¢ > 0 there exists 8(g) > 0 not depending on n such that
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[gallr 1) = galth )| < & whenever d(if,, ;) < 6(e). Because i, is continuous
in © uniformly in u, it takes values in some compaciset ¥ = ' and for
cvery 6 >0 there exists y(é) > 0 not depending on »n such that
d(f,(0,).F,(6,)) < & whenever p(f,,0,) < n(8). Putting ¥, = i (0,),
Wy =,(0,) it follows that for every &> 0 ther: exists n(d(e)) > 0
not depending on n such that |g,(f.(7,)—g.(F0,)) <& whenever
pifty, 0;) <n(d(e)). Therefore g,=1F, is continuous on @ uniformly in
n: B

Proofof thearem 3.7(a)

For given ("e®, let N4°(&) = {#e@:p(f,0°) < 4] and let §%(d) =
supp ) and g(d) = infy ;;g;q[[ﬂj Given cnndjtmn?r (i)

sup |n~' Y E(@0)—n" i E(q (0
< supn™ EE! 7:(0) — q6°)]

< (Lf)
S B
foralld <é < &

If a%(8) = sup,af(d) < oo for all 0 <6 < " and 'n~' Zr_, E(LY)} is
0(1), it follows that

na :=i1 E(gi(d))—n""! ’__il E(g(t™)| < M°(d), A<

sup

n=l
for all 0 <d < 46" so that for any ¢ > 0, choosing 6,(c) = min [d7,
a ~'g/A)] = 0 implies

'Y E@Oe)—n" Y, B ()

sup |H”

nal
Alternatively, if for some p = 1, @°(8)" = sup,n~ ' 2'_, a’(6)" < oo for
all0 < é < & and {n™ ' EJ_  (E[L{]P 1) is O(1), then by the Halder
inequality

sup; n- i E(L{)af(d)
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ul 1—1/p - 1/
= sup (n“ Y E(Loyplie- u) (, o ,[a} )
nz 1= &

=<Ad(j), A<

for all 0 < <" so that for any &> 0, choosing d,(g) = min [&°,
a ~'(s/A)] > 0 agair implies

sup (n=1 P E@O ) —n" ) Eq(07)| < (3.1)
= = =1

A similar argument establishes that for any &> 0, choosing d,(e) =
min [4° &~ '(g/A)] inplies

n! |Z| E(g{(8,(e))) —n ! il Elg,[0")| < & (3.2}

n=l

Now forall @ in (89, all0 < 6 < &% and all n

i g @) = n~t Y E(G(0)).

pd Zi E(g6) <

Thus, for any 6 >0 choomng d,(e) = min [d% a° ~!(e/A)] > 0 implies
thatforalln=1,2,.

—6< ¥ H@b o) —n~" 3 Ka (o)
<n” 3 HqO)—n"" § Ha()

<n' Y E@O ) —n" 3 Ba(@)
e
orforalln=1,2,...
—s<u™! S EqO)-n"" ¥ Eg0) <o
for all § in 7°(8,(e)). Thus §(-) =n"1Er_, E(g(-)) is continuous at

e ®@ uniformly in a. Because ” is arbitrary, it follows that ¥, is
continuous on @, unilbvrmly in n.
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Proof of theorem 3.7(b)

Fix & = 0. The collection of open spheres Uy . o2"(6,(5)) forms an open
covering of @. By the definition of compactness, it follows tkat there
exists a finite subcovering on ©, say | 11(6,(e)), 1(e) e M.

Fix 6”in @, and let 0* be an element ol @ such that 8”e 1(8, (). Now
foralln = |

L]

w1 5 )<=t 5 3l o)

and it follows [rom the uniform continvity in theorem 3.7(a) end (3.1)
that

—n~! 3. Bg(0) < —n”* >, Ha(0)+¢
and % =

71 3 Eq0)) < —n~* § K@i6,@)+e
Hence

nt Y a0V =B @) <17 3 al0,0)~ B@6 .6+ 20

< max n ! Z i (e) — E(G(8,(e))
lgis :[J_:l (=1

+ 28

A similar argument 2stablishes that

Y 009 B0 > 07 Y gi60,)~ EglG,@)-

il

= min n™' Y gidde)—Elg(de)
tgisl) =

—2&.
Because {g(6)} and {g}(8)} satisly the strong law of large numbers

locally at @, i = 1,..,I(s) given conditicn 3.7(ii), it follows that given
£ > 0and w in F there exists N{w, £) < cosuch that for all n > Naw, &)

—¢= mr n- Z Lailen, de) — E(qi - (e

1 &I-s;ﬁ_e:l =1
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and ;
max n' S [qHw, 508)— E@( 56)] <.
1=i= 1E) =1

Thus for given & = 0 and we F, P(F) =
M
=3p<n! Z (Irtfm Hﬂ}_E{Qr( ‘s E,IF}], < 3
=1

for all n = N(w,¢) lor all 6 in ©. Because & is arbitrary, it follows
from definition 3.1 that n= ' EP_ | q(6)— E(q,(6)) — 0 a.s. uniformly on
@, 0

Proofof theorem 3.11

The proof is identical to that of McLeish (1975a, theorem 1.6) except
that Z, is replacec by Z,, and ¢ is replaced by c, (see Gallant
1987). o

Proofof corollary 3.2

The proof is identical to that used to establish the strong law of large
numbers based on Lolmogorov’s inequality (as in theorem 2, section
5.1 and theorem 1, section 5.3 of Tucker 1967). However, instead of
applying Kolmogorov's inequality, we use MeLeish's inequality to
obtain (setting §, = E!'_, Z)

P| max [5|z¢|< K(Z cf),.fcz
= f

l=k=n =1

for arbitrary £ > (. This follows from Chebyshev's inequality,

[ e 2
P| max [5/=¢|<E ( max S, ] )/e*
Ll=k=a = l=k=n

= E( max IS*F);’Ez.
I=k=n

The desired result now follows from McLeish's inequality. o

Proof of lemma 3.14
We follow the argumrent of McLeish (1975a, theorem 3.1). Let | = [n3/2]
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be the greatest integer less than or equal to m/2. By the triangle
inequality

IE™Zu)lI* < B (B Ml + | B ™(Z = EL LU Z s

where E'"" )= E(:|FF"™™), FF=d...,¥). Applying the conditional
Jensen's inecuality to the second term gives
I ™Z — B U Zu )2 = E([E~™Z,,— Ei Y2037
< BE="([Z,— B (2, 1))
= L{[ZHI_E:—II{ZHt ]1} 2
=1Z,—EZIZ,);
= 1
From lemm: 2.1 of McLeish (1975a), it follows that

HE™EZ(Zul2 < 2 ~ WIEZYZ,),

<2 ~VIZ 1
ar
BB HZ 2 < S EHZ, ),

50: 1i2— l.n'ruzmlf

P

In both casss, the second inequelity follows from the conditional

Jensen’s inequality.
Combining these inequalities gives
NE™(Z)ll2 < 2 ~ I Z,d + 05 (3.A.3)
or
NE™Z Mz < Set2 =1\ Z )+ vy (3.A.4)

Setting I, = Etﬁu;,]rzﬁ + Uy OF o= 5-.“.CEJIEI.Q_:|I’”+I.'["I.-1] and ¢, =
max (|| Z£,,]|. 1) we see that

“Ef_“{'znl}”l I:m 111
Further, by lemma | of section 21 of Billingsley (1968, p. 184)
|Zn=E"™Z 2 < 120 —E 2 (Z:02 (3.A.5)

= Y
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so that

||Zni"_ EHm{zm}”I = ":m-!-lcr-r'

Thus {Z,.} is a mixingale.
That [, is of size —a [ollows immediately given the sze requirements
placed onv,, and ¢, or«,.. 0

Proof of teeorem 3.15

It follows immediately from lemma 3.14 that {Z,} is a mixingale of size
—1/2, with ¢, = max(||Z ]|, 1). Because T2, |Z|l./t* < oo, it follows
that

Y et =Y max(|Z}, 1)/
=1 =1

o e
£ Y IZI2+Y 1/ < oo
f=] o |

The resultnow follows from corolary 3.12. O

Proof of lenma 3.17
Pick " in ®, and as before define
qi0) = supyesq.0).

Given condition 3.17(i)(b), it follows from theorem 3.49 of White ( 1984)
that g7(d) is mixing with ¢, of size —r/(2r—2), r =2 or a, of size
—rf(r—2),r > 2forall § > 0. Furher,

EG(O)"* " < Esupyesle(0)7+
Given cordition (i)(a) we have
lgithl = D
where D, isr/2 + n-integrable unifcrmly in t. Hence
EIF(0)"* " < Esupypg[D,['*
= E|D "2+,

Because D is r/2+ y-integrable vaiformly in ¢, it follovs immediately
that §{(d) s r/2+n-integrable uniformly in ¢ for all §> 0. Thus the
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conditions for McLeish’s law of large numbers for mixing sequernces
(e.g. White 1984, corollary 3.48) are satisfied, so tha: n™' Z7_ | [7()—
E(g(0)] =0 as. for all & > 0. Because 6° is arbitrary, the result holds
for all @ in®. A similar result holds for g;(d), where ve use the fact that

E|gi(8)"* "7 = Elinfyesq(0)/7*
= E|—suppys —q (@) "
= E| supyp —q(0)7*
< Esupypglgdd)7* .

This establshes the result underconditions 3.17(i)a) and (b).

Now consider imposing conditions 3.17(ii){a) and (b). For given £°,
the near epach dependence impesed in condition 3,1 Hii){b) ensures that
the near epoch dependence concition of theorem 3.15 is satisfied for all
0 <4 < é" By arguments similar {o those above, we also have that
condition 317(ii)(a) implies that £(8) and 4,(8) are r-integrable uniformly
in ¢ for all 5 > 0. Thus Z2,||G()I2/1* < 2 | A/ < oo and similarly
for g7 for agpropriately chosen A < oo and all § > 0. Hence the moment
conditions of theorem 3.15 hold. Because {¥,} is nixing of the ap-
propriate sze, it follows from theorem 3.15 that n~' E"_, [§%(5)—
E(g{(d))] —D as. for all 0 < 6 <45°. Because F is aroitrary, the result
holds for all 0° in ®. A similar result holds for g%(&) and the proof is
complete. o "

Proof of theorem 3.18

This follows as an immediate corollary to theorem 3.”. Condition 3.7(1)
is imposed directly. Given conditions 3.18(ii) or (iii), the conditions of
lemma 3.17 are satisfied, which implies that condition 3.7(ii) holds, and
the proofiszomplete. o

Proaf of theorem 3.19

We give the proof that , — 62 — 0 as. The result thet §,—6* — 0 as.
follows analogously. Assumptiors DG, OP, MX, SM, and DM ensure
that y,(()—F,(8) — 0 as. uniformly on © by theorem =.18. The domina-
tion condition DM ensures that (@)} is O(1) uniformly on @, so that
for all @, ,(7) takes values intericr to a compact subset of &' uniformly
in n. Because {g,} is continuous uniformly in n given msumption OP, it
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I'::r]l::rwe; [rom lemma 3.4 that

yn{ #n{ﬂ.}.}_ gn{ lp‘ll[ﬂ,” = ﬂ 2.5,

uniformly cn &, 1.e.
Q.0 -0 (0 —0 as.

uniformly cn @,

Because 7, minimizes @,(f) on @, and because {f} is identifiably
unique on {@,} by assumption I3, it follows from theorem 3.3 that
8- = 0us. |
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4 More on Near Epoch Dependence

The concept of near epoch depend:nce plays a crucial role in establish-
ing the uniform law of large numbers of the previous chapter, and thus
in establishing the consistency of the estimators considered here. It
plays a simiarly crucial role in esiablishing the asymplotic normality
and the corsistency of useful estimators for the asymptotic covariance
matrix of our estimators.

In some zases, it is straightforward to verily that a double array is
near epoch dependent simply by applying definition 3.17. In other cases
(particularly where dependence ona parameter is involved) this is more
difficult, Thus it is helpful to have available results whict can be used to
verify the near epoch dependence of a particular doubl: array. In this
chapter we oresent several such results, together with discussion of two
important syecial cases: least squares estimation of an AR(1) model, and
instrumental variables estimation of one equation of a system of
implicit nodinear simultaneous equations.

Our first result is a useful lemma which provides coaditions which
will help to establish results ensurng that a function of a near epoch
dependent process is itself near epoch dependent.

Lemma 4.1
Given (LFP), let b:A"— R, weM, be measurabk-B(R")/B, lel
X:Q— R be measurable-F/B(R"), let X:Q— B" b: measurable-
G/B(#"), G c F, and suppose that £(b(X)?) < co. Let d( - ) be a metric
on R and suppose there exists B:R" x 8" — B measurable-B(R" x
F™)/B such thatl with probability on:

B(X)— b(X)| < B(X, X)d(X,X)
and for seme r>2 and any p,g such that ‘447 '=1,
1B(X, X)d(X )|, < oo, ||d(X, £)||, = oo, and ||B(X, £)||, < oo. Then

IB(X)— E(BXIG)I|; < KIIB(X, Z)||ir=2H20r=1)1d( X, X)|fie=2n20= 1),



