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4 More on Near Epoch Dependence

The concept of near epoch dependence plays a crucial role in establish-
ing the uniform law o’ large numbers of the previous chapter, and thus
in establishing the consistency ol the estimators considered here. It
plays a similarly crucal role in establishing the asymptotic normality
and the consistency of useful estimators for the asymptotic covariance
matrix of our estimatcrs.

In some cases, it is straightforward to verify that a double array is
near epoch dependentsimply by applying definition 3.13. In other cases
(particularly where desendénce on a parameter is involved) this is more
difficult, Thus it is helplul to have available results which can be used to
verify the near epoch dependence of a particular double array. In this
chapter we present several such results, together with discussion of two
important special cases: least squares estimation of an AR(1) model, and
instrumental variables estimation of one equation of a system of
implicit nonlinear similtaneous equations,

Our first result is a useful lemma which provides conditions which
will help to establish results ensuring that a function of a near epoch
dependen! process is itself near epoch dependent.

Lemma 4.1

Given (QF,P), let 2:@" R, we/N, be measurable-B(R")/B, let
X:Q— R* be measurable-F/B(RH™), let X:Q - A% be measurable-
G/B(R™), G = F, and sippose that E(b(X)?) < co. Let d(-, - ) be a metric
on & and suppose there exists B:B" x BY - B measurable-B(R" x
A")/8 such thal with probability one

[B(X)—b(X)| < B(X, X)d(X, X)

and for some r>2 and any p,q such that p '+4g '=1,
1BLX, X)d(X, X)||, < o, |ld(X, X)||, < co, and ||B(X, X)||, < oo. Then

[1B(X) — E(B(X)G)ll; < KIB(X, X[y~ Dljd(X, X)||§ =221,
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and

K = 2||B(X, )d(X, X|jriae—n, e

The inequality condition is the crucial one here. The condition
lo(X)—b(X)| < B(X, )X, X)

can be viewed as a convexity condition, and is often verifiablz by taking
a mean value expansion and applying the triangle inequality. In this
case, a useful choice for d(X,X) is d(X,X)= X’ |X,—X, where
X =(X)and X = (X)).

strictly speaking, the integrability conditions (apart [rom a require-
ment that E(b(X)) < «0) are unnecessary. Because of pcsitivity all
integrals exist, and the inequalities hold trivially if the integrals are
infinite, The cases of interest occur under the conditions stated.

In our applications, we shall ultimately be concerned with doubly
indexed ¢rrays of functions of doubly indexed random varables near
epoch dependent on some underlying process. The followingresult uses
lemma 4.. to obtain results relevant to these applications.

Theorem 4.2

Given (QLF, P), let {X,,:Q — R", w,= N} be a double array of functions
measuratle-F/B(R"), let d( -, - ) be a metric on 8™, and let {¥;:02 — R,
ve N} bestochastic process on (€, F, P).

Let b,, BR"t — R be measurable-8(H™)/B, n,t = 1,2,..., and suppose
that E(b, X ,)?) < oo, n,t = 1,2,... . Further, suppose that there exist
functions X,,.:Q — R measurable-FI™/B(RY), Ftm=a(V,_,....,

Vopmh m=0,1,2,..., and functions B,:@" = R"™ — R measurable-
B(R"™ x B")/B,such thatforsomer > 2andp=l,g= 1,p " '+qg ' =1

'ill‘ll'l — supﬂ sl pl ”dl{'xnlr Xrnm}”p
is of size —2a(r— 1)/(r—2) for some a e R, and with probability 1
|tﬂf{Xﬂr} T h"rtf I'NI'FT»”. é BHI{ Xﬂlr Xﬂll‘lljdl{xhl‘ 'fmﬂl}f

where BJX,,X,..) is g-integrable uniformly in mt=12,... and
m=0,1,%...,and B (X, X, Jd{X .. X ...) is r-integrable uniformly in
=012, andm=0,12....

Then {,(X,,)} is near epoch dependent on {V} of size —a. ©
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Corollary 4.3
Let {Y,,} and {Z, ]} be double arrays of random sealars.

@ If||Yl, =A<ewand||Z,], <A <wforsomer=2,nt=1,2,...
and (Y, } and {Z,} are near epoch dependent on {¥} of size —a,
acf, then ||Y,,+Z,|, <2A < oo and {Y,+Z,} is near epoch
dependent on { ¥} cof size —a.

(b) MY I, sA<ooand || Z, );, <A< forsomer=2, n,t=1,2,...
and {Y,} and {Z,} are near epoch dependent on {¥} of size
—2a(r—1)/(r—2), aeR, then ||¥, Z, |, <A’ < w and {Y,Z,} is
near epoch dependent on { ¥} of size —a. o

Thus, sums and products of near epoch dependent processes are near
epoch dependent, giver appropriate integrability and memory con-
ditions. For example, recall that when ¥, follows an AR(1) process with
innovations g such that [[&]l, < A < oo, then |||, < A/(1—|0,]) and
{¥;} is near epoch depeadent on {g,} of size —a, for a arbitrarily large.
Hence, suppose p> 4, and set r = p/2. Then Y2, and ¥,_ Y, are
r-integrable [or r > 2 uniformly in n,t; further {¥2 ,} and {¥,_, ¥} are
near epoch dependent cn {g} of size —a(p—4)/(2p—4) for a arbitrarily
large. Similar results hold for ¥, generated by any finite ARMA process
with roots outside the uait circle.

These facts allow onz to apply theorem 3.15 immediately to show
that if ¥, is generated by a finite ARMA process (with roots outside the
unit circle) having independent (but not necessarily identically distri-
buted) innovations &, such that |lg]|, < A < oo for some p > 4, then
the ordinary least squares (OLS) estimator for the AR(l) model,
0, =[Z0 Y2 17" 20, Y. %, is strongly consistent for §*=
[n-tZE E(YZ )] 'n Y Ef_ | E(Y,_, Y). In the special case in which
Y, is in fact generated byan AR(1) process we have the following result.

Corollary 4.4

Let {g} be an indeperdent sequence with lledl, = A < oo for some
p=4, llgll; 26=0 and E(g)=0, t=1,2,... . Suppose ¥, =10 and
Y=0,Y_,+& t=12..., |8, <1 Then #,—0, as, where § =
B Y I EL Y Y, s

Similar results obtain for any correctly specified AR{p) model with roots
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outside the unit circls. The feature of interest here is that {&} need not
be identically distrituted, so that {Y¥;} is not in general a stationary
process. Because Y, depends on the entire past history of g it is not
necessarily a mixing orocess either. Nevertheless, the OLS estimator is
consistent for fi, despite the possible presence of arbitrary hetero-
skedasticity or the absence of mixing properties.

Results of this sort for the stationary case are well known, and require
considerably less in the way of moment restrictions (Eannan 1970:
Yohai and Maronna 1977). Although the allowed heterogzneity contri-
butes in part to the edditional moment conditions imposed here, they
are more directly atributable to the resemblance of the underlying
mixingale law of large numbers to martingale laws of la-ge numbers,
which impose conditions on second rather than slightly more than first
moments. Other mettods (e.g. those of Robinson 1978) can clearly yield
weaker conditions. In fact, as the work of Lai and Wei (1983) demon-
strates, the assumptiens that |0,| < | and that {&,} is indzpendent are
entirely unnecessary. Corollary 4.4 is presented only as a1 illustration
of the use of near epoch dependent functions of mixing processes.
We note also that weak consistency results under less stringent
moment conditions wing near epoch dependence can be obtained using
Andrews's (1987) weac law of large numbers.

Results such as corollary 4.4 rely heavily on being able to obtain a
closed form solution for the estimator of interest. Genesally, such a
representation is not available. However, such representaions are not
required by theorem 3.19. Applying theorem 3.19 is made zasier by the
following extension of theorem 4.2, which allows functons of near
epoch dependent procwsses to depend on a parameter.

Theorem 4.5

Given (£, F, P), let {X,:Q — B"™, w,e N} be a double array of functions
measurable-F/B(R™), and let {¥:Q — B*,ve W} be a stochastic process
on (&, F, P).

Let (@, p) be a separable metric space and let b, :R"x© — 7 be
measurable and, for cach x in 4, €B(R") such that P[X,e4,] = 1,
continuouson @, n,t = 1,2,... . Suppose that b,(X ,, ) is Z-dominated,
it =l

Further, suppose there exist [unctions X, :62— A, measurable-
Fiim/B(R™), and for each (° in © a constant §°> 0 and function
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By, : A" x R" x @ — H measurable and continuous on @ for each (x, %)
in A, x A, such thatorsomer >2andp= l,q=1,p '+g ' =1

Hmp = SUP,SUD, “dl{xnh ‘?mm-]”p
is of size —2a(r—1)/{r—2) for some a< /A, and with probability one for
all 81in 77%(4")

B X s )= b X s O < Bru(X s K s O X s R )

where  Bj(X,, X,,.0 is g-dominated on #°(§°) uniformly and
Be(X o X s U X o X ) i r-dominated on n%é")  uniformly,
it =1 2..andm=001,2 ... .

Then { f,(0) = b,(X,,, 8)} is near epoch dependent on {¥}} of size —a
on (@, p). O

To illustrate the content of this result, again consider the AR(1) model.
Let X, =(Y,Y_,), vhere Y] is generated by the AR(1) process of
corallary 4.4, Let

b(X..,0) = {};_H}:_]F.
Mote that the index »n is unnecessary here. Thus
J';:{E'} T {};_ﬂ}:- 1}1.

We saw in chapter 3 that f (0} is r-dominated for » = p/2, where p is
such that Elg|" <A <o, Set p>4 so that r>2 Next, setting
{fma e [?mu' ?m.r—l}} and ‘ﬂX:r‘f.uu} = Y=Y 1% — i;n.r— 1| (drop-
ping the t subscript from d,) with

m
1P;cu: = E ﬂ;ﬁ:—r
t=0

1A s Bl = 1= Tl 1% s = B,
S 1= Tl 1Yy — Tl

= ”'—2+] E:‘ﬂ:_’[iﬁ-f-“' Z : H;EI—I—r”p

T=m+

=107 Y 0%, il + 1O Y. Oc6-1-m—ll,
=1 T
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<10 3. Pulee -y
+HOU" 3, 10,151 -l

< |0," AL =0, D4 18,1m T AL = 8,]).

This implies ‘hat ., is of size —d' = —2a(r—1)/(r—2) for any a = &'
x(r—2)/2(r—1);a'e R, and p->4:
For given °, we now seek 4° and Bj, such that for all 7 in 17°(8°)
]{}:_ﬂ};— LJZ_{EM_ fi ?m,:— ljzl = B::{Xn JE‘rruru ad{-xr Eml]*
Because (a* —b*) = (a+ b)a—b), we have

Ffli-Sﬂ—llz—fﬂ.;—”?m.r-ﬂzl

= [(5=0%_ )+ (B — 08, MY, —0%,_ ) — (T — 0%, 1)l
S|V V= 0¥y + B Y= B + 101 Y = B =)
{(hAEEh A BT DA BTV S (b £ @ E) AED MY )}

The last inequality makes use of the lact that || < 1. Now the second
term in parentheses is just d(X,, X ), so the first term cen be taken to be

Bre(Xey X 0) = (X1 Bl 4161 1%y | 4100 B oo -

Mote that with this choice of B2, tie inequality above 1olds for all § in
©, so that &° can be arbitrary. Thischoice for By, is also valid for all 67 in

G.
We now verify that BS(X,X,.0) is g-dominated, g = p/(p—1).
Because [0 <1,
Bﬂl{xnrr'fmn H} = |};|+|?m[+|}:—1|'{'|Pm.r— 1|
=D,
and for g = pl(p—1) < p(whenever p = 2)
1Dl g < 1¥ellg+ 1 Foellg 11 el 1l Bl
< I 1 Rl 11— ol 1 Bl

where the firg inequality follows llom Minkowski's inequality, and the
second from Jensen's inequality. As we saw in chapter 3, ||¥]|, =
AN(1—10,]) < oo, Tt also easily shown that II?,,,,H,, = Af(1—}0,]) < 0.
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Hence -
I1Dmlly < 4A/(1—10,]) < oo
so that By(X,, X, 0) is g-dominatec as required, g = p/(p—1).
MNext,
Bk Ky (X, £,,) < Dy d(X,, K,,) = DL,
so that by th: Cauchy-Schwartz inequality
1D%ully < (1Dl Ay X )l
Setting » = p/2, we have
1D%dle < 4A/(1—16,]) 216, A1 —18,])]
<8A%/(1—|0.]) < w0
where we use the fact that |8,/ <1 and
(X X pllz, = I1d(X , Xl < 200, L ANL—|6).

Thus, B}(X,.X,.0)d(X,X,,) is r = p/2-dominated unibrmly in m =
0,1,2,..., mi=12,... ., By setting @’ = (r—1)/(r—2) w: immediately
have that f,,0) = (Y,—0Y,_,)* is near epoch dependent on {¢,} of size
—1/2 unifornly on ([ — 1 +&,1—=¢], |- ).

Previously we established that ths choice for f(f) satisfies assump-
tions DM ard SM. Now that we have shown that assumption NE is
also satisfied, we can easily establish the following result.

Corollary 4.6

Let { be anindependent sequence with lledl, = A < coorsomep >4
and E(g) =0 |lg)l.=d>0, t =1,2,... . Suppose ¥,=0 and ¥, =
0, Y1 +et=1,2,...,18,] < 1. Thend, - 0, a.s., where

L]
f, =argmingn~' ¥ (%,—0V,_,)?
=1
and @ =[—1+4¢ 1—¢] for some > 0. =
This result differs from that of corollary 4.4 only in that now we
consider the least squares estimator constrained to lie within the

interval [—14,1—¢] rather than the unconstrained least squares
estimator,
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Now censider estimating the parameters of the implicit nonlinear
equation
wit ¥, = =11,
=0, =0 Z=10 t<0 _
using the method of moments, In particular, supposethat
BlZ o i Zy) =14

so that any measurable [unction of the current and legged values of the
“predetermined” variables Z, is a legitimate instumental variable
candidate. For simplicity, consiler the case in which the instrumental
variables depend only on a finite number of lagged values of Z,.

Specifically, let
K =cfZi)
where Z_,=(Z,_,...,Z,), so that K, is measuradle-G{_, = a(Z;_}};

le M. ‘
Further suppose that, for each £, u, admits a mean value expansion

in ¥ and }_, so that with probebility 1
Iu.{};! }'}— I!Z:! B}'_”r{ ?ml ?rn.r— ir ZH H}i
= |{a,-’r3‘y1]|u,{ ?M! i:I-rru— 1 Zn m’[ }‘; T ?rnt]
—|—[E:?|.|’ﬁyi}u,[ .}}nus 1',r||.l - :rznﬂ.]{ﬂ— = ?n,:—lji
where ¥, and ¥, are measurable-Fi ), (note that with .V’ = (B, Z;),
Z, is alwars measurable-F; 27 fo- all m = 0), ?,,,, lies ¢n the line segment
connecting ¥, and ¥, and similarly for ¥,,_,, ind (d/dy,)u, and
(6/dy)u, designate the partial dzrivatives of u, with respect to the first
and second arguments of u, respectively. Letting |(¢/dy Ju (Yo Yoo - 1o
Z,0) = U and defining UZ,0) similarly, it follows that
|H.|.r};: }:w 13 Zr! ﬂ}“ “r[ ?mr ?m.r— :I!Zr! m]
< (UniO) 4 UZ(ON Y= Vol -+ | Yoy = B )
Henee, forallm = [
|{:|{z:—|!}u:{}:r ) 11211 G]_cl{z:n.l gl Kuu Frrr,l— 1~er1r~ o)

< e Z} - U nd0) + UR O Y — T + 17—y = B

i iﬂ |zl—t_zm.!—r|}f
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where ‘we choose Z,,,_.=Z,_. t=0,...,I This is in the form re-
quired for application of theoren 4.5, with X, = (¥, Rl
b,{X" H] = Cl{zlr! - r}u:{ }';- }; ol ) Zr:- ﬂl and

B(X,, X, 0) = |c(Zi_ (UL(O)+ UZ(B)).

Note that this choice is valid forall ¢ in © and that again 6° may be
arbitrary. The near epoch depencence of f{f) = b(X . i) on {15} of size
—a on (0,p) will follow from theorem 4.5 given ‘he near epoch
dependence of ¥ established in the preceding chapter and by ensuring
that appropriate domination cenditions hold for B{(X,.X,..0) and
Bi(X, X,.0)d(X,, X,,).

By ensuring the near epoch dependence of

{ﬂﬁ] = r:{ -‘; —f}“i{ };r }: e I.:Zr- H}}

on {¥, = (1, Z,)}, these conditions help to establish the consistency of
the instrumental variables estimator for the parameers of a single
equation of a system of implicit nonlinear simultaneous equations with
errors and explanatory variables exhibiting considerabe heterogeneity
and dependence. Because our focus here is on the general case, we
content ourselves with these heuristics and leave the precise details of
these cond tions lor other work,

An interssting feature of the examples just discussed is that in each
case the functions Bf were indeperdent of #° and the constants §° could
be chosen arbitrarily, as the required inequality held over the entire
parameter space. These propertes turn out to be quite useful in
establishing the asymptotic nornality of the estimators considered
here, as wesee below.

The devdlopment of the asympiotic normality prope-ty rests on the
following sirengthening of the near epoch dependence concepl.

Definition 313 (near epoch dependeace: continued)

(c) The double array { f,{0)} is neer epoch dependent on {¥,} of size —a
uniform'y on (@, p)if and only ilit is near epoch deperdent on {¥}of
size —aon (©, p), and for every sequence {#,} on @, [ £,(6.)} is near
epoch dzpendent on { ¥} of size —a. O

The need for this strengthening arises in the next chapter when we take
mean valueexpansions of random functions around @ or @* in order to
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investigate the asymptotic distribution of f, or @, This leads us to
consider sums of random variables of the form f,((#¥). With this
strengthened definition, we can exploit asymptotic distribution results
for appropriately normalized sums of near epoch deperdent processes.
The following result provides @ useful link betweea the notions of
near epoch dependence on (8, p) and near epoch dependence uniformly

on (&, p),

Theorem 4.7

Given (©,F, P) and a compact s¢t @ = R, let {}:6— R",ve/N} be
measurable-F/B(AY), and let f,:2x@ — R" be a rindom [unction
continuouson ® as.n,t = 1,2,... . Suppose that { f, (01} is r-dominated
on @ uniformly in n,t = 1,2,... forsome r = 2, and that { f,(6)} is near
epoch dependent on {¥;} of size —a on (®, p). Suppose further that
there existsa sequence {v%} of size —a for which

U= SUP{prc o) SUP(s < 5} Tl 0)
and

vE = SUP (e @) SUP (s < 5} k07 8),
where

B,l0°, 8) = sup, supy[| F1(0)— E T Froll2
0%, 8) = sup, sup| £7(6)— E L0,

and for each #° in ®, ° is a constant depending on ( sach that &* = 0.
Then { f,(6)} is near epoch depzndent on { ¥} of siie —a uniformly
on(®,p. 0O

Thus, whenever we can establish near epoch dependence on (@, p) in
such a way that the near epoch dependence does not depend in an
essential wiy on the neighborhooc of the particular pant (" in ® under
consideration, then near epoch dependence uniformly on (@, p) follows.

By strengthening the conditions of theorem 4.5, we obtain a result
ensuring the uniform near epoch dependence of a unction of near

epoch dependent processes.
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Theorem 4.8

Suppose the conditions of theorem 4.5 hold with B, = B, (not de-
pending on ) for all 6 in @ and with 6° such that §°(¢") = ©. Then
{ful) = b,(X,.@)} is near epoch dependent on [V of size —a
uniformly on (@, g). O

This result allows us to conclude that uniform near epoci dependence
holds in the examples previously discassed (under approp-iate domina-
tion conditions) because the choice lor BY, was not dependent on (° and
because 4 could be chosen so that 11%6°) = ©.

Another aporoach to establishing the near epoch dependence of a
function of neir epoch dependent functions is based on the following
measure of hew close an F-measurcble random variablz is to being
G-measurable. Formally, let X be measurable-F and Bt G be any
g-algebra. Defne

&(X; G) = inli2 meas-6) SUP{Fer, peamm | PIX € B) N F]
—P[(XeB) N F]l.

When X is mezsurable-G, £(X; G) = 0 The maximum valuz possible for
&(X; G) 15 unity.
A result analogous to lemma 4.1 is the following.

Lenuma 4.9
Given (€L F, P),let X:Q — " be measurable-F/B(R"), and et b: " — R
be measurable-B(H")/B.
(a) If|b(x)| = clorall xe B", then

inr{ﬁnuus-Gj Eih{X]—b{/fH = 48(X;6); and
(b) Forall r =2,if||b{X)||, < oo, then

IB(X) = E(BX)GI, < 2217+ DEAX; ) A1), o
The proof of this result makes extensive use of the results and approach

of Dvoretsky (1972). Applying this lerrma yields the followng analog of
theorems 4.2 ard 4.7.
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Theoremd.10

Given (L F, P), let {X,,:Q — B" w,e/V} be a double array of functions
measurabdle-F/B(R™), let {1: 02— B, ve M} be a stachastic process on
(Q,F P)anddefine BN =a(V._ ... Vo)

(a) Let b,:R" — R be measurable-B(R")/B, n,t = 1,2,... and suppose
that b (X ) is r-integrable uriformly inmt = 1,2,...,r > 2.1

. =sup, sup, &(X ;F1"

is of size —2ar/(r—2), then [b,(X,)} is near exoch dependent on
(W} of size —a.

(h) Given a compact set @ = &, let b,:R" = ® =+ & be measurable-
B(R")/B for each f! in @&, and continuous on @ for each x in
A, € R™ such that P[X eAd,]=1, n,t=1.2,...; and suppose
that ’:,,,{X",,E‘} is r-dominatzd on @ i.:]'lii‘::rrm'],-r innt=12...,
r=21f ¢, is of size —2ar/(>—2), then { f,(0) = b,(X ., D} is near
epoch dependent on { ¥} of sze —a uniformly 01 (@, p). o

Finally, we give a result which rzlates the near epoch dependence of a
random variable to the properies of its expectation conditional on
some relevant o-field.

Theorem4.11

Given (Q F, P), let {X,:Q — B",we N} be a double array of functions
measurable-F/B(R™), let {G,} be a sequence of o-fields of Q, let
{V:Q—A1" vel} be a stochsstic process on (@, F. P), and define
[t =y R L

If E(X}) < oo and

= sup, sup, [| X, — E(X,|G, A FiZ3)I;

is of size —a, where G, A Fi1 " isthe smallest g-fielc containing all sets
commonto G, and Fi 77, then

{a) {X,}is near epoch dependent on (¥} of size —a and
(b) {E(X,|G,)} is near epoch dependent on { ¥} of siie —a. O

A useful epplication of this resul: occurs in cases in which G, is chosen
tobe F~'=a(...,¥_,) and X, = Vou(¥, ¥, Z,0,) in the correctly
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specified inplicit nonlinear equation example. When the errors &, are
a conditionally homoskedastic martingale difference sequence, the
optimal instrumental variables can be shown to be

(Y, Yoo, Zyy B)F ).

The result above suggests more primitive conditions which may be
useful for demonstrating the near epoch dependence ol this choice lor
the instrumental variables.

MATHEMATICAL APPENDIX

Proof of lerima 4.1

Because Eb(X)|G) is the best G-measurable approximation to h{X) in
L,-norm and b(X) is G-measurabls,

[1BX) — EB(X)IG)], < [15(X)— ()],
and by hypothesis,
||BX)—bX)II; < |IBX, Xid(X, L)l
For ¢ = [||3(X, X)(l lld(X, X)|I NI BOX, X)d(X, X))l 71" et

B/X,X)=BX,X), BX,X)dx,X)<c
=0, H{E_X]Id_{X,ﬁh}r

and let By(X, X) = B(X, X)—B,(X, X). Then
IBX, X)d(X, X)|; < 1By (X, L)X, Xl + |1 BAX, X)d(X, X)|,
by the triargle inequality. Now
18X, £)d(X, X)ll; = ([B (X, X)d(X, L) dP)"*
< M([B,(X, X)d(X, £)dP'
< M8 (X, )iz *d(X, D)l
by the Holder inequality, and
| By(X, R)d(X, B)||, =c'* 3([c" 2B, (X, X)*d(X, X)*dP)'?
< (B, (X, Xyd(X, KYdP)'?

by definiticn of B;, Thus, collecting the inequalities above yields
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(160X — E(B(X)|G)]l;
< ¢! P|By (X, X2 1lX, D)
+ €202 B (X, )X, R
< B, Xl ldlx, L)l
+ @2 BOX, D)X, R
= 2|[B(X, X)d(X, X)|jp2er=1
x|IBEX, Rl =272 Didex, R)llg =22,
where the la:t equality follows by the definition of ¢. Thus, setting
K =2||B(X, 5)d(X, X))l 1), we have
I6(X) ~ E(B(X)G)Il, < KI|B(X, X[ =212~ bjfd(x, R)||fe—2w20r -1,

and the proolis complele. O

Proof of theorem 4.2
Weapply lemma 4.1, setting X = X, £ =X, .G =FImb(-)=b.("),
and B(-,- )= 3,,[ - ). which vields
[1Br X ) — Et 2 mbud Xz € KXy Xl 212002
< Kuﬁ; 2){2{r=1)

where K' =2\ < oo given the integrability conditions imposed. The
result follows mmediately, given the size requirement on  E ]

Proof af corolliry 4.3(a)

SetX, = Yo+ Zy. By Minkowski's inequality ||X, ||, S| ¥,ll, + (12, <
zﬁ: <00, wﬂ‘].' ‘?I‘Nm = E:::{Xn!]li ?I'I'Ilr = E}'rrﬂ:( }:rrL zmn! = E:t:{znf:h t].'“:
Minkowski inequality also implies
[?:r = Hp, sup, ”an_"?mnllll

< S, 51]]1':{” '.r:u = ?mmﬂz A ”z:rr_zmnr”_l}

su,+ U,
where vy and 1, are defined similarly to v Because v?, and 7, are of size
—a, it follows hat of, is of size —a.

Mare on Near Epoch Jependence &1

Proof of corollary 4.3(h)
It follows tom the Cauchy-Schwartz inequality that

e Zelly < [Vl Zoell2 < A% < 0.

nr
The result follows by applying theorem 4.2 with X, = (Y, Z,),
B = R0, Ay K ) = Vo= T 12— Zinah a0 brsX,) =
Y. Z,, Now
|}:1:Z||:_ ?mmzmrl = H::rzm_ 1k:uz'mm:l +“:1lzmn: o ?mmﬁmn:l
— |YrrJ'| |an_’2mrr:} + |2mm| Wm_ ?rmurl
= [.l }‘:r:l T |2mn:” [i }::l = ?mr:ri 'Hzn: = 2:1:!1:'}
= Bnr{zmr XJHHI}EI{Xﬂﬁ frrlrﬂ'}l
where B (X X o) = | Yol + 12t Now B (X, X ) 18 2r-integrable as
a consequznce of the Minkowski and conditional Jensen's inequalities:
”Em{Xnn ':Emnt]”?_r = “ 1'll(:'rrli:.r 25 ”Zmurllzr
= ” le!:r‘l“ ”zmllzr
= 24,
while B, (X ., X )d{ X, X ) 15 r-integrable as a consequence of the
Cauchy-S:hwartz, Minkowski, and conditional Jensens inequalities:
”Em{ Xngv Emmjd{_xnr- “?mm,llr ""‘-:‘- |IEmE"Ym1 Xmﬂ:}il:’_é]d{)"’m! Xmm]”lr
= zﬂﬂl}:r”h'r' “?m.lr”mr

T ”zrlr”.!r g ilzmnr.li‘.r:l
< 2A02)1 Yo llze+ 212l 1)

< BA%
In this application q of theorem 4.2 corresponds to 2r, 5o p corresponds
to 2r/(2r—1). Because r = 2, we have 1 < 2r/(2r—1) <4/3. By Jensen’s
inequality
Hap = 5up, SUp,||d(X . Xonll,

< sup, sup, (1 Y — Yol + 1120 — Zoiudll2)

=+,
where o, = sup, sup, || ¥, — V.l and ¢ is similardy defined. Be-

cause {¥,} and {Z,} are near epoch dependent on {¥} of size
—2a(r—1/(r—2), it follows that n,,,, is of size —2a(r—1)/(r—2). Thus,
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the conditions of theorem 4.2 aresatisfied, and it follovs that {¥,, Z,,} is
near epoch dependent on { ¥} of tdze —a. o

Proof of corollary 4.4

We saw inchapter 3 that { Y} is near epoch dependent on {&,} of size —a
for a arbitrarily large, given thal ¥, =0, ¥, =0, ¥._ 4+, t=1,2,...,
and ||&]l, £ A < o0. Setting r = /2 lor p > 4, it follows from corollary
4.3(b) that{ Y7, } and {¥,_, ¥} ase near epoch depend:znt on {z,} of size
—alp—4)/2p—4) and that ||Y2 |, and ||¥_, Y|l are uniformly
bounded for r > 2, Because {g,} is independent, it is trivially mixing
wilh e, of size —p/(2r—2) It then [ollows from theorem 3 15 that
r B Y= L E(YE = 0as and that n Y EL Y, ¥,—
1 EY E(Y,_, ¥Y)—0as Thus

n =1 n ] —1
e ets featient 5 it |
] r=1 =1

n
=

XnT LY BV oY)+ 0 as
1=

(e.g. by preposition 2.16 of White 1984), i.e. §, — 9* — Oa.s., where

0= [n'l i E{Y,l_l}:| i i E(Y., )

=1
But

E(fi- ¥) = E(Y,_ (6, Y-, +2&))
= 0,E(Y7_ )+ &Y, &),

Because Y_, =XZ,fig_,_, ard because {g} is an independent
sequence with E(g) = 0, it followsthat E(Y,_, ¢,) = 0, so that

E(Y,_, Y) = 0,E(YZ ).

It follows taat

0= [n‘lwil E[Yﬁ,lj:l

Thus {, — 1, a.s. and the proofis complete. o

' 3 E(YE )0, =0,
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Proaf of thzorem 4.5
By hypathzasis, for given 8 with probability 1
H‘-E an! ﬂ} I:I {Xﬂ" fl‘l’ll‘lr’ I]»:I:-II{XHH ‘:I?Mhi,} + bmr{‘fnmt H}
bl X s 0) < B X s £ e O X iy X ) + b X 0)

for all 6 in 17°(6"). Under the assumptions given, b, (X, 0), ha(X i,
and B%(X . X .. 0) are random functions continuous on © a.s. It lollows

that the sapremum over an opin sel exists as. Thas, we take the

supremum over 1°(d) on both side: of the inequalities above to obtain
SUD e Ol X s ) — SUP (Bl X s )
= suppaBald e X DX
SUD () Dl X s 0) — SUP 50, X s 0)
<SP Bl X K s X s K )
so that
ISUP (51Dl X s 0) — SUP B X e )
< supye Bad X X 04 X, X 00)
with probability 1 forall 0 < 6 < ¢". We apply lemma 41 setting
X=X ,X=X,,G=F2nb(-) = supgab.-0)
B(,* ) = supypis Bl 8),
and
Ki(8) = 2||B(X, X)d(x, L1720 V|BLx, )y =200
Lo obtain

|1 75(8) = B2 (P2 < KeO)lIdy(X gy Xl ~2V20 10
= qﬁi{{q}”tr 2)2ir— :r
where f2(3) = sup,”,g}b,,,[}f,mﬂj end K5 (d) < 4A = A' < oo given the
domination conditions imposed. Eence

0,0 8) = sup, sup, || frdd — E{ L (a0l
< ﬂr”.s;l*; 2)2r—1)

forall 0 < § < 6°, and for each (° i1 ©.
A simila- result follows for f 7(¢) = infygb,( X, 0) by using the fact
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that
Huph'"hs] - hur{"‘l"nn Il'” = i [ rfi'p[n’-l:lbnrl::'xnt' ﬂ:'
50 that
U,(£°,8) = sup, sup, || f78— EL 2 2 L)l
i alult.:”: 2H2{r—=1)

forall0 < 6 < 4° and for each " in ©.

Given thesize conditions imposed on #,,,, it follow: that (07 ) and
v, (01", &) are both of size —a. It now lollows from defitition 3.13(b) that
{ ful0)} is near epoch dependent or { ¥} of size —a on(®, p). |

Proaf af corellary 4.6

The result bbllows by verilying the conditions of thzorem 3.19. Con-
ditions DG. OP, and MX are essily or trivially verified. We saw in
chapter 3 that assumption SM halds under the conditions given. The
argument of the text demonstrates that assumption NE holds for
(¥, =8 Y._,). To verify assumptior 1D, we note that in the present case

0.0 =n~" 3, ELY—0 )
=™ 3 B(Y- 0= 0)+ )]

E 8= 0 4n” _ZI B0, —0)

+ E E(&?)

Because of ndependence of the saquence (g} and Efz) =0 we have
E(Y,_ &) = 0. Further,

E(YL)) = r([f ﬂ"D

= Y 0FEE, )

=0

=64 (1—0%) > 0.
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Therefore
0,0 =z (8,— 06 (1 -0 +n"" i E(s7),
=1

with equaity at =, The [inction on the right hand side is
minimized uniquely at 8% = @, so that assumption 1D is satisfied, and
the proof is complete. o

Proof of theorem 4.7
We will shew that for any sequence {,}

Uy = SUP, SUP, || ful0,) — EZ R L) 2
is of size —a. Pick any sequence {fl,}. Fix n and 1. Because E[T7(f,.(0.))
is the best L, predictor of f,(0,) given F; Z. we have forany 6 = 0

10— ELZ0L 02 S 1ful0) — B2 T 02

<I740)- 2 ::( 28
+ ”Jrr-rl: # J”E!

where [ (5 = supy, ) Jul0) 1(3) = {0 O: pl[ﬂ, E’n} < o} By assumption,
theré existsv® such that for & sufficiently small

vm = 175d8) — B 2Pl
and v} is olsize —a.
Let
gnli[m:l T [Jlrr::{m" Hn] —SUPg k- 'j.r:u{mr U}}Z

where 1 (k") = [#e®:p(0,0,) <k '}. As f,, is contiwuous on @ for
given @ in 1 set FeF, P(F) = 1 it 'ollows that for any &> 0 there exists
K, (&, w) < o such that forall Beq (k™ '), k = K (& )

| foiey Bp) = ful 0, O)] <&

It follows from the definition of a sapremum that there ecists & e, (k™)
such that

| furn, 0,)—supy -1 fule,0)]

= |_j‘;r|:l:’ﬂ, ”JI} = _lll:lrl::r”v ﬂ:]l = ].ﬂi“"}! ﬁﬁ} =T Sup!;_ﬁ' "}_lll:lr[ru1 HH
< 2p
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Hence for any & there exists K, (&, @) < oo such that orall k > K_ (&, ),
dualw) < 4e*. Because & is arbitrary, g, (w) = 0 as k - oo forall w in F.

Further, because [ (e, ) is r-dominated uniformly in n,t,r = 2 and
because by the ¢ -inequalily

Fyfn:kl:m] = Eﬂlr[mr 'r]mllz + EESHFIM& = ‘I;J;l':ws m}zs

it follows that g,,; is dominated by an integrable funciion. The Lebesgue
dominated convergence theorem (e.g. Bartle 1966, p.44) implies that

Jl_lim fy,,“r.l‘P = jﬂ:h‘—‘ = (1,

Thus,

”J'I;rmn}_fﬂ,{ﬂlfz —+{ asd—0
and because & is arbitrary, it follows that

0} = B 02 < o5

Because this holds for all n¢ = 1,2,..., we have ¢, = v and because
16} is arbitrary, this holds for any sequence {0,}. Bzcause v}, is of size
—a, it follows immediately that v, 15 of size —a, and the proof is
complete. W]

Proof of theorem 4.5

We verify the conditions of theorem 4.7. The conditions given ensure
that { f,()} is near epoch dependent on { ¥} of siz2 —a on (©,p) by
theorem 4.5.
It [ollows [rom the argument of theorem 4.5 that

0,(0°, 8) < sup, sup, K7 ()l 231

1,,(6°, 6) < sup, sup, K, (8l -3¢ -1
where

Kﬁf{a! = 4”!“"]31‘}'[5] B:r{XnH -"E‘mnr- GJII”:{_ A

l15P706) B X s X s DX s K ) IF2 1.

Obviausly,

SUP|e@) SUPs < o) Ol 07, &)

< [sup(irem) SUPEs < o) SUP, Sup, Ko (o)1, #0~1,
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and similarly for supyr. @) sups < ») L.0" 9). Because B;, = B,, for all
{1 in @, we have for all 07 in & that

SUPa BaX s X s 0) = 5UpPpyois B X s X s 0).
Further, because 1j°(6; = ©, we have
0) < supg B(X 0 X s 0):
It follows that for all fe @ and § < &,
K () < 4llsudg Bl X s X ooy Ol =213~ Y
% [151P@ BuX s L s DX s X172

B
E";'er"

Su]}!f'l,:"l]l Eﬂf[;{r!! “F

Given the domination conditions, we have that K, = & = 4A for all
n,t. Setting v¥ = Ayt~ 2201 giyes

" i
U 2 SUDP (i @) SUP{S < ¢ Tnlll”, 8,

and similarly
Uk = SUPipes) SUPLS < 3 Ll 0).

Given the size conditions on #,,,, it [ollows that v}, is of size —a, so that
the conditions of theorem 4.7 hold and the proof is complete. |

Proof af lemma 4.9(a)

Let F = [w:b(X(w)) = b(X(w))]. First, suppose that P[F], P[F7] > (.
Because |b(x)] < ¢ lor all x, EB(X)—bX)| < 2¢ and E|b(X)—b(X)| =
E[B(X)—b(X)F1P(F)+ E[B(X)— b(X)|F]P(FF). Lemma 5.1 of Dvoret-
sky (1972) states that for random variables ¥ and Z with |Y| < |,
|Z] = 1itfollows that

|E(Y)—E(Z)| < 2supg.glP(Y € B)— P(Ze B)|.
Therefore
E[B(X)—b(X|F] < 2csupy gl P{b(X) € B|F)— P{b(X)€ B'|F)|
= Zesupg plP(X eb 'B|F)—P(X eb 'B|F)|
< 2csupgeginm|P(X € B|F)— P(X € B|F)|
= 2esuppepmrm|[P(X € B) M F]
—P[(XeB) N\ F)I/P[F]
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= EL‘{EUI'.IFE F.Be Emv}IF[Uﬁ = ﬁ] MiF]
—P[(X e B) M F]I}/PLF].
A similar argument yields
E(b(X)—b{X)|F)

< 2e{supycr, peas| PLX € B) N F]
— P[(£ e B) " FII}/PLF<).

Substitution yiclds
E[b(X)—b(X)| < desupper, peamnlP[(X e B) N F1-P[(XeB)N F]|

and the result follows by taking the infimum over £ measurable-G on
broth sides of the inequality.
If PLF?] = 0or P[F] =0, we have

ElB(X)—b(X)| = E[B{X)—b(X)]
or
E|B{X)—b(X)| = E[W(X)—hX])]
respectively, and argument identical to that above yelds

Eb(X)—b(X)| < 2csupger, pesmm|PLIX € BN F]
—P[(XeB) N F].

and the result again follows,

Proof of lemma 4.9(b)
Forc=0,let
by(x) = bx), (b0 < ¢
=0 fb(x)| = ¢
and let b,(x) = b{x)— b, (x). [t follows [rom the triange inequality that

1B(X) — E(b(X)|G)Il, < llb(X)— E(b(X)|G)||
+[1b5(X) — E(ba(X)|GY-

As E(b,(X)G) is the best L, predictor of b,(X) and as b,(X) is
measurable-G whenever X is measurable-G we have

I3 (X)— Eby(X)G)ll2 < inlg meas-allby(X)— (X2
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= i“f.fml:.-uiﬂmb:lx]-bn{‘f]lldp}l'll
i“r}'f IIIUEE-G[ECI |b1[X}_b1{R\||E ﬂ‘P}I":

<
< (20)3(4cE(X; )2,

where the last inequality [ollows from lemma 4.9(a) applied to b,.
Applying the triangke inequality, conditional Jensen’s inequality, and
law ol iterated expeciations gives

162(X) — E(by(XNGly < 2152(X)];
= ([ bo(X)? dP)ti?
= 2c@ ([ ¢ 2by(X)? dP)
< 202 2([ by(X) dP)
= 26212 b (X% < 262X,
Hence
|Ib(X) — E(B(X)IG)ll; < 8'2¢&(X5G) 12 + 2213 B{X)]I/2.
If &(X; G) = 0, set c arbilrarily large so that
I(X)— E(B(X)IGN2 = 0
and the result follows. Otherwise, let ¢ = EX;G) '||b(X)||, and the
result again obtains, after some algebra. |
Proofof theorem 4.10(a)
Apply lemma 49 with X = X, G = FI1% and b(-) = b, (). This yields
1B X ) — B2 2B X2 < SAE(X s FIR)A 71
< SAEN2-tr

given the integrability conditions imposed. The result follows im-
mediately given thaté,, is of size — 2ar/{r—2)

Proof of theorem 4.10(h)
Apply lemma 49 with X =X, G=FIr, and for given (¢ and

0 <8 < &, b(X) = supye(ebulX e 8) = 5(X, 6). This yields

183X s 8) —ELE (B X s Wl < SALX, 5 201210
é Sﬁl;jnfz Lir
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given the domination condition and the definition of £, An analogous
argument establishes that

B3 ey 0)— EL 2 B(bA(X o, )l < SAEH2 1P,
where bj(X,, 6) = infyesb.(X . 0). Because these inzqualities hold for
all §" and d* chosen so that 1°(6°) = ©, the conditions of theorem 4.7

hold for v = SAEL*Yr so that {f(0)=b,{X..N} is near epoch
dependent on {V;} of size —a uniformly on (®,p). O

Proof af theorem 4.11{a)

Because G, A Fi2% = FX0 it follows immediately from lemma 1 of

t=m =" f=m

section 21 urBJHm;,RILy {1968) that
by = Supn Supill Xnt_ E{XntlF: t ::J“
< sup, sup || X, — E(X |G, A FZll;
E |l:’JI'I"

Because [, is of size —a, we have v, is ol size —a.

Proof of theorem 4.11(h)
Because E(E(X |G)IFITD) is the best Fifr-measurable L, predictor of
E(X,|G,), we have
| E(X ol Go) — B S RE(X |Gl
< [|E(X G — EI TN EX 41G, A FLZ,
By the triangle inequality we have
| ECX |G — EYTIME(X |G A R0
< [IE(X |G — E(X |G, A FZ0;
HIE(X Gy A Fi2m)— EfEm(E(X |G, A L2
Because G, A FiI =

Bt =

E(XwG, A\ FiZR) = E(E(X,|G, A FZDIG).

= G, we have

Thus

HE(X |G} — E(X,|G, A R
= [|E(X |G — E(E(X |G, A FIDIG
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< 1 X~ E(XLIG, A RZ0IL < Ly

by the conditional Jersen’s inequality (cf. the proof of lemma 3.14).
Similarly, we have E* "(E(X,[G, A F:tm) = E(E*m(x,)|G, A Fitm),
s0 that

[1E(X |G, A FZ0)— EfZR(E(X )G, A Fi2m)I;
= ||[E(X,|G, A FiTm— E{F”"‘ G A F I,
""{"-”XM' Er+m{xnr:]”1

where the first inequality follows frum the conditional Jensen’s in-
equality and the second from theorem 4.1 1(a).
Collecting the inequalities above and taking suprema, we have

sup, Sup|lE(X,|G,) — ELER(E(X |G|, <

Given the size requirement on £, it follows 1mmadlalcly that E(X |G,
is near epoch dependent on {V} of size —a. o
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