5 Asymptotic Normality

In this chapter we present results which allow us to state conditions
ensuring the asymptotic normality of the urconstrained optimization
estimators considered in chapters 2 and 3. These resulls provide the
basis for constructing confidence intervals and statistical hypothesis
tests of specified size asymptotically. We alio present related results
which allow us to examine the power properties of these tests.

The first result we present is a version of the asymptotic normality
result of Domowitz and White (1982, theorem 2.4),

Theorem 5.1

Given (£, F, P) and a compact set ®@ = B let 0,:QxO - & be a
random [unction continuously differentiabl: of order 2 on @ as,
n=1,2,... .Let{ :02 — @ be a function measirable-F/B(R*),n=1,2,...
which solves ming @,(0) a.s., and suppose ,— 0% — 0 a.s,, where {0%} is
interior to ®@ uniformly in n. Suppose there exists a nonstochastic
sequence of k » k matrices { B} }O(1) and uniformly positive definite such
that

B: = l.":\/{n}?uﬁ:r "fl' J"'lr{ﬂ-r I};l

where V,0% = V,0.(0%). If there exisls a nonstochaslic sequence
14,:0 — NE""‘} such that {A4,(6)} is continusus on @ uniformly in n,
ViQ,(0)—A,(#) - 0 as. uniformly on ©, and A} = A (07)} is O(1) and
uniformly positive definite, then

B:_”!'A‘T\/[HHﬁn_ 1*) A N(D, I o

The asymptotic normality result which we present for our optimization
estimator is obtained by verifying the condiions of this result under
assumptions compalible with those of chapters 2 and 3.

The condition that {#2} is interior to & uaiformly in n means that
there exists £ > 0 (not depending on n) sufficiently small such that for all
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n sr:sﬁicicnﬂy large {feR*:|0—0% <&} = {0e Q:|f—8¥ < &), so that
(1 1s prevented from getting too close to the boundary o ®. The
ccrn_d:tinn that {B¥} is uniformly positive definite means that for each n
By is positive definite and there exists & > 0 sufficiently small such thut‘
for I.'J._il n sufficiently large detB* > & When {8y} is O(1), uniform
positive definiteness implies that {Bf ~*} is (1) and uniformly positive
definite,
The condition that

B2 /(n)V,0% £ N(0,1,) (5.1)

together with & mean value expansion of VO,(0,) around 6* plays the

fundamental role in establishing asymptotic normality of (1. This

condition ako plays a crucial role in establishing the foundatioa }nr our

later resulison the power of various test statistics, as does an aralogous

condition fr f. This analogous condition is that there exists a

I:[fnstnc]mslic sequence {B2} O(1) and uniformly positive defirite such
at

By 2 )V, Qe — Vo @2 4 N(O, 1), tp:e)

where V,0% = V,0.(0°). The presence of this latter term arises because
\/l[n}‘FIﬂQﬂl[{?",,l generally will not have zero mean without appropriate
cenlering. [n the case of f, we have /(n)V,0* = 0 (where V=
VaU,(0F)) forall n sufliciently large, because for such n, 0% will rrinirflize
@, interior to ©. -

Our first goal, therefore, is to obtain conditions ensuring the validity
of (5.1) and [5.2). We establish (5.2); (5.1) will then follow by putting
€, = 0,50 that 02 = g*.

We begin by placing conditions on ¢, and i, ensurirg that
Qn{ﬁ,‘ff 4.[0)) satisfies appropriate measurability and continuity
requirements, specifically those of theorem 5.1, It suffices to modify the
optimand assumption in the following way.

Assumption QP

s . * A = :
]éf};?xhé :c;n;imul subset of B*. For n = 1,2,... define the opimand

Qlw.0) = g (i (e, B)),

where (&, 0 = n= 1 Er_, 4(w, 0), and
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(i) {g,:® — R} is continuously differentiable of order 2 on compact

subsets of @' uniformly in n;
(i) q,:€2x @ — R’ is a random function continuously differentiable of

orderZon Qas. t=1,2.... . o

Lemma 5.2

Given assumptions DG and OP', Q, = g,=1/,:2x © — | is a random
function continuously differentiable of order Z on @ as, n=1,2,...
with

?EQH = {vulgn > 'rl!‘rn} IIIII_'lil'-"lllrﬂ
Ik 1xl ixk
and
végn == 1;Illl‘llill!:r.; {viﬂ.ﬂ 2 llblﬂl l‘;Irlll'llf".n -+ [?U'ﬂhu ‘r&l ® Ik] \?#u}n!
kwk Ex] 1=k =k kx| kxk
where Vi, = [Val'in ..., Vi, O

Thus, {V,0,(:)} is a sequence of measurable functions. As we establish
in the proof of theorem 5.4 below, 0 () is also differentiable on @, and

?ﬂQn T {vlrx't}n 2 IF.I'I’.:I?E nt
Volul®) =" Y VeE@(0) =n~" 3 FVaa(0))
(=1 =1

under appropriate domination conditions on V,g,(f). This ensures that
consideration of the asymptotic distribution of \/{u}[ﬂ{g:—?ﬂ@} is
meaningful,

To obtain the asymptotic distribution of /() V405 — V,J;) we follow
Bates (1984) and define the random function

0u(0) = (Q0)+ (i — TRV g 00N + Vg, (TN (0) — (),
where /2 = (02), 2 = (#), and we show tha

B 1"2\/{”}{“@: — V@) — B~ V2 (n)Vo G — V-0,
where V0 = VJ,(07), and that

By~ 12 Jn)(V, 05— V@) < N(O,T)

These [acts imply that B2~ Y2, /(n)(V,02—V, 02" = N(0, 1), as desired.
A little algebra yields
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VONVZ V@) = n72 Y My,
=]

where

M3 = Vol Vog, (F)lan, — E(gs)]

k=] kxt x| Il

— [V — E(Voaz)]' Va0,
kxi [a]

with g7, = ¢,(0%). To obtain asymptotic normality, we define

M
B = var(ﬂ""z v Mﬁ:),
=1

and seek conditions which will ensure the asymptotic unit normality of

n n
LT AN L T U e ool
=] r=1
for arbitrary Aef* such that A'4 = 1. This will establish that 82~ Y/*
)V, 08— V,07) £ N(0, 1,) by the Cramér-Wold device.

Before stating a central limit theorem which will allow such con-
ditions to be imposed in a straightforward manner, it is helpful to
examine the form of M7, a little more closely. This form simplifies in
some important special cases. For example, suppose that | = | and
daltf) = —1r, as in the case of quasi-maximum likelihood estimation,
Then V_g (i) = —1 for all i € R while Vg, () = 0 lor all s € B. In this
case we have

M = = Voo + E(Voay).
Alternatively, suppose g,(i¥) = W'Pof as in the case of method of
moments estimition. When the moment conditions are correctly
specified (i.e. f,(0,) = 0 for some @, in @) and the constraints imposed
are correct (so that 0, is in ©,), then 0% =0, and J°=0. Now
V,gaif) = 2P0, s0 that in this case V g,(§%) = 0, while Vig,()) = 2P,
for all e B, implying

M:r = z?u'ﬂanq:r
On the other hand, when the moment conditions are incorrect or the
constraints are iavalid, both terms of MY, play an important role in
determining the isymptotic distribution of J{::}[?QG:—"F’EQ:}, and thus
DF\/{HHﬁn—ﬂ:},
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We now state a central limit theorem for near epoch dependent
functions of a mixing process due to Wooldridge (1986) which allows us
to find conditions ensuring the asymplotic sormality of the relevant
sums. Wooldridge's result is related to results of Withers (1981).

Theorem 5.3

Let {Z,,} be a double array such that ||Z,||, £ A < o for some r > 2,
E(Z,)=0,nt=12,...,and {Z,} is near epach dcpendent on {¥} of
size — 1, where {}}} is a mixing process with g,, of size —r/(r—1) or 2,
ol size —2rf(r—2). Define

vt = var(l é,,,).
ym']

and suppose that v, 2 is O(n ™ '). Then

i Y Z ANOY o

fe=1

This result is analogous to the Liapounov ceniral limit theorem, in that
bounds are placed on some moment greater than the second. However,
the present result allows for much greater dependence than the in-
dependence required in the Liapounov resull. Note that the present
resull dispenses with the asymplotic covariance stationarity condition
of results such as that of Serfling (1968) and the versions of Serfling's
result used by Domowitz and White (1982). This result thus allows [or
fairly arbitrary heterogeneity. However, reladive 1o the moment con-
ditions, the mixing and near epoch dependence conditions have been
strengthened by a factor of two over those earlier required lor laws of
large numbers.

As indicated above, we obtain the desired result by setting Z,, =
A'B2 Y26 for arbitrary AeR*, A'A = 1. We therefore impose as-
sumptions which ensure that the conditions oftheorem 5.3 are met. The
first condition is the r-integrability uniformly in n,t of Z,,. For this, the
[ollowing modification of the domination condition plays a key role.

Assumption DM’

(i) The elements of {g(f)} are r-dominated on @ uniformly in
i (I e K
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(i) The elements of {V,q(0)} are r-dominated on @ uniformly in
[ PR el =]

Assumption DM(i) ensures that {{f}} is O(1), so that given assumption
OP'(1), {V g0} and {'i?ug,, w"}} are O(1). Assumptions DM'(i) and (ii)
together ensurethat yf,(0) is differentiable on @ and that {V,/°} is O(1).
That M7, is rintegrable uniformly in n,t then follows from the
Minkowski inequality.

The r-integrability of Z, follows il {B% '} is O(1). Now B’ =
var(n~ ' Z., M7,). For {B2 ™'} to be O(1) it suffices that 182} is O(1)
and uniformly positive definite. To ensure that {B:} is O(1), some
restriction on the dependence of the random variables M?, is required.
The conditions which ensure that Z,, has the appropriate dependence
properties for asymplotic normality also allow application of McLeish's
inequality to guarantee that {B;} is O(1). Thus we strengthen assump-
tions MX and NE in the following way.

Assumption MY

{ ¥} is a mixing sequence such that either ¢, is of size —rf(r—1), r = 2
or o, 15 ol size —2rf{r—2),r = 2. o

Assumption NE'

(i) The element of {¢,(0)} are near epoch dependent on (¥} of size — 1
uniformly on (@, g).

(ii) The elements of {V,q,(0))} are near epoch dependent on { ¥} of size
— 1 uniformly on (@, p). o

Note that assumption NE'(i) strengthens assumption NE both by
increasing the size requirement from —1/2 to — 1 and by assuming near
epoch dependence uniformly on (@, p). This latter condition ensures that
near epoch dependence (and therefore the mixingale property) are
preserved regardless of the behavior of {#4).

We now have sufficient structure to guarantee that {B2) is O(1),
via McLeish’s irequality (theorem 3.11), as well as to ensure that Z,,
will exhibit aporopriate dependence propertics. Uniform positive
definiteness of { B7} is a condition which must simply be imposed.
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Assumption PD (positive definiteness)

) For {#} and {67} as defined in assumption ID, the sequences {5}
and {B}} are uniformly positive definite. o

Because A2 = [, we now have sufficient corditions to ensure that
Z., = AB2 M2 is r-integrable uniformly in n,t. By construction,
E(M2) =0, so E(Z_) = 0. Given assumptions NE' and MX', M, and
therefore Z,, = A'BY ~ Y2 M}, satisly the appropriate dependence con-
ditions.

Now in this case

b= var(zi ) = var('i A‘B:'”zfﬂ)

= "B~ l.l'ln.rar(z M’z:) il 0y — 1’5'; - l'rlf-‘riﬂ’:}ﬁfl_ 12

=1
=n

so that 72 = n~'is indeed O{n~ ') as theorem %3 requires,

Underlying the proof of asymptotic normalitr is an application of the
uniform law of large numbers to Vg (0). To help ensure that this
applies, we impose the following smoothness coadition on Vg (0).

Assumption SM
(ii) {V,q(0)} is a.s. Lipschitz-L,. o
WL now have conditions ﬁuﬁ]cicnt to apply thzorem 5.3, which yields

—H2J)(Va05— V.35 < N(0.1,). The conditions imposed  also
LU'lranT.L.L.,/n (n)(V,0:—V,0)) =0 A L) which gives the following result.

Theoren 5.4

Given assumptions DG, OP, MX', SM(i) and ii), DM(i) and (ii), and
NE'(i) and (ii), { BY} is O{l} IF assumption PIXi) clso holds, then

BLTR fm)(V,00—V0%) 2 N(O,L). o

This establishes (5.2). To obtain (5.1), we set 6, = © so that #ff = 0%,
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and ensure that V,0F = 0 by requiring that * minimize ¢, interior to
© uniformly in r. We modily assumption 11

Assumption 1D’

(i) The sequence {0, (6)] has identifiably unique minimizers {0F} on @,
interior to @ uniformlyinn. o

Corollary 5.5

Given assumptions DG, OP', MX', SM(i) and (ii), DM'(i) and (ii), and
NE'(i) and (ii), { B} } is O(1). Il assumptions PD(i) and ID'(i) also hold,

B*- 1;3\;’{,,}~¢EQ:’ < N0, 1), m]

This result establishes a key condition for the desired asymptotic
normality for (., A similar result for @, is not available, essentially
because the natire of the constraints rm;:-nsed in obtaining #, usually
make it unnatusal to assume that £ is interior to ®,. Nevertheless,
theorem 5.4 provides the structure needed in chapter 7 to examine the
local power properties of statistics based on the constrained estimator.

In order to obfain the asymptotic normality result for 4, we still need
to ensure the exstence of a nonstochastic sequence {4,:@ — R***}
with the desired properties. In view of lemma 5.2, a natural candidate
for A, is

An — ?t%gh = ?BI}:‘[?E\ n® Iﬁﬁ}?l?llb_n +f?r,rﬂu 2 lfl];ﬂ = Ik}?jiﬁn

The desired uniform convergence will follow. by application of lemma
3.4 provided that i (0)—J(0), Vil () — VF (6), and Vi, (0)—V2§(0)
converge to zero a.s. uniformly on @. Sufficient conditions are already
in place to ensure the convergence of i (f)). To ensure that of V,,(0)
and Vi, (0) we add sufficient structure to apply the uniform law of large

numbers, theorem 3.18. We use the following additional smoothness,
domination, and near epoch dependence conditions.

Assumption SM
(ii) {Viq(0)} is as. Lipschitz-L,. o
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Assumption DM’

(i) The elements of {Vig(0)} are r-dominaed on © uniformly in
t=1,2,....r=2 o

Assumption NE

(i) The elements of {V,q,(f)} are near epoch dependent on { ¥} of size
—1/20n(0, p);
(i) The elements of {Viq,(#)} are near epoch dependent on 1V} of size
—1/20n (@, p). o

Mote that assumption NE(ii) is implied by assumption NE'(ii) which we
carlier imposed. The next result does not require the strength of the
latter condition, so we do not impose it. Also, for ease of reference we
identify assumption NE(iii) with a condition which we now label
assumption NE'(iii),

Assumption NE'

(iti) Assumption NE(iii) holds. 8|

These conditions allow us to establish uniform convergence of Q,(0),
Vu@,(0), and V30,(0). Our interest here is on ¥(, (0). We present the

other results for convenience. Parts (a) and (b) of the next result are used
in chapter 7.

Theorem 5.6
(a) Givenassumptions DG, OF, MX, SM(i), DM, and NE(i),
G =g, ¥, @R

is continuous on @ uniformly in n and @(0)—0,0) =0 as.

uniformly on @:
(b) Given assumptions DG, OP'(i) and (ii), MX, SM(i) and (ii), DM'{i)
and (i), and NE(1) and (ii),

Vo0, = (V,g, ¥, )Velll,: O - R*

is continuous on @ uniformly in n and V,2,(0)—V,0.(0) — 0 as.
uniformly on &
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() Given assumptions DG, O, MX, SM, DM’, and NE,
v = ViQn = Vol Vg, = )Vl + (Vg o 1, @ L)VE,:© — @k 2k

where Vi () = n™ ' i V3E(g(0) = n~ ' Er_, F{? q,(0) is con-
tinuous on @ uniformly in n and V3Q,(0)— A (0) - 0 as. uniformly
on &, o

Result (c) is the ane relevant for our immediate purposes.

The only condition of theorem 5.1 which remains Lo be considered is
that requiring {A¥} to be O(1) and uniformly positive definite. Given
theorem 5.6(c), the domination conditions imposed ensure that {AX} is

O(1). It is convelzient simply to impose the requirement that {A*} is
uniformly positive definite.

Assumption PD
(i) {A¥}and {47 are uniformly positive definite. =
The condition imposed on {42} is used in chapter 7,

We now can state the desired asymptotic normality result for our
unconstrained optimization estimator.

Theorem 5.7
Given assumptions DG, OF’, MX', SM, DM', NE,, I, and PD,
BY 1AL /(nN0,—039) £ NO.1). o
This result provides a fundamental basis for testing hypotheses. In

practical situations, one needs estimates of A* and B*. These are the
focus of the next chapter.

MATHEMATICAL APPENDIX

FProof of theorem 5|

Because (1, — 0% -0 a.s. where {6}] is interior to ® uniformly in n, there
exists a sequence | Jf 00— E]} measurible-F/B(8) and tail equivalent to
g (ie. ﬂ* =f az n as) such that E}' takes its values in a convex
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compact neighborhood of 6} for all n. Becaase {§, minimizes Q,(0) a.s.
and because 0} is tail equivalent to 0, and interior to © for a.a. n, it
[ollows that

Vo005 =0 aan as

By the mean value theorem for random ‘unctions (Jennrich 1969,
lemma 3) there exist mean values % i = 1,..., k lying on the segment
between @7 and 02 such that

ViQuth) = Vo1 + V5 0,(05—03),
where Vi0, is the kxk hessian of @, with row i evaluated at 0\,
i=1,...,k Moultiplying by \/{n]l and using the first order condition
above gives

V0 V20, SN0 —0) =0 aa.n as
Because Vi Q,(0)—A,(0) — 0 a.s. and 617 — 8% - 0 as. as a consequence
of B —0% -0 a.s. it follows from theorem 2. of Domowilz and White
(1982) that V20, — A* — 0 a.s. Because A* is uniformly positive definite,
it follows that V2(), is nonsingular a.a. 1 a.s. Thus
SN0 =04 = —Vi0., L /mV,QF aan as
Premultiplying by B* /% A4* gives
By ~'AY/(n)(0F —67)
= —R* '”ZA:T"EQ;IJEHWEQ: aan as
= —BY YA/ (nIV,0% —BE 1PAXVIOT ! —AX )
x B¥12pe=1i2_[mV,0% aa.n as.
= —Br 12 J(nV,0F +o,(1)
The last equality follows because B* ”3\/ (V4@ is 0,(1) by asymp-
totic normality, {By''*}, {B} ~'/?}, and {A}! are each O(1) given the
assumptions, and V20, ' —A* "' = 0 a.s. Because B* Y/ 2\/ (n}V,0* 2
N(0,1,), it follows that —B*~'2_/(mV,0# < N(0,1,) also. Thus, by
lemma 4.7 of White (1984),
BY ~V24% /(n)(0F —62) £ N(O,1,).
Because {04} and {{1,} are tail equivalent, it folows immediately that

B:—ir'zA:\/{"Hﬂ‘"_ﬁ:} =l N{O, 1) O
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Proafof lemma 5.2

Given assumption OP'(ii), g,(f1) is measurable-F/8{7") for each  in © so
that () = n™ ' I | q,() is measurable-F/B for each ¢ in €. Because
for each 0 in ©, Vg (0) is the limit of a sequence of measurable
difference quotients, it follows that V0 (0) is measurable-F'8(R%) for
cach 0 in O, A similar argument establishes that Vi (f) is measurable-
F/B(8**¥ for each 0 in ©. Because V.4, is continuous by asumption
OP'(i), it s measurable (theorem 13.2 of Billingsley 1979, p. 154). For
each 0 in ©, the composition V,g,(f,(f) is measurable by theorem
13.3 of Bllingsley (1979, p. 154). A similar argument establishes the
measurability of Vg, (i,(6)). Because products and sums of measurable
[unctions are measurable (lemma 2.6 of Bartle 1966, p. 9), it follows that
the elements of V,0,(6) and V30,(f) are measurable-F/B for eazh ¢ in ©.
Next, let Fye F be the set of all we £ such that gw, - ) is continuously
differentisble of order 2 on ®. By assumption OP'(ii), P(f) = 1. It
follows that yr (e, ) = n™ ' Z{_ | q,(ew, -) is continuously differentiable of
order 2 01 @ for all w in F" = (Y. | F,, P(F") = 1. For fixed we F", the
chain ruleimplies that Q (e, - ) is differentiable on © with gradient

t:';‘}%u (), - J' = fuﬂn (*&n{w1 ) ?t’t‘i’n (oo, ),

Continuity follows because compositions, products, and sums of con-
tinuous functions are continuous. Application of the product rule and
chain rule implies that V,0,(e,-) is differentiable so that 0, w, -) has
hessian

?I‘l; Qn{w! »:I = 1I‘.';rﬁ'rJ!I’rrll:'r""‘]i : .]r ?f-mflﬁ’r.[ﬂh ¥ ” ?ﬂllll'rn[wr .:I
kxk kxl =] Ink
+(Vogulitalen, - ) @ L) Vi (e, ).
ko= ik tknk

Continuity follows because compositions, products, and sums of con-
tinuous functions are continuous. As the result holds for all we F",
P(F) = 1, the proof is complete. w}

Proaf of thzorem 5.3
See Wooldridge (1986, corollary 4.4), o
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Proof of theorem 5.4
First we establish that @, is differentiable on ©. Recall that

) =n~! Zi E(g,(0)).

Because g,(0) and Vyq,(0) are r-dominated unifermly in ¢ for r > 2 by
assumption DM'(i) and (ii), it follows from corollary 5.9 of Bartle (1966)
that V,E(q,(0) = E(Vq,(0)), which implies that

Volil0) = 17t 3. E(Voq (0)

Because (J, = g, -\, and because g, and \f, are differentiable given
assumptions OP’ and DM/(i), it follows from the chain rule that @, is
differentiable and that

Vo@n = (Voluo ¥Vl n=12....

We establish the desired result by first showing that
Vo0 —V402) 0

and then establishing that
By ™12 /(n)Vo 0 — Vo 02)' = N(O, 1,).

MNow by lemma 5.2
VO = Vg (iiVoiirs.

Taking a mean value expansion of V g,(i,) around i gives
Vidulia) = Vg (F2) + (s — VR) Vi,

where each column of V24, is evaluated at a mean value lying on the
segment connecting (% and %, Thus

Vo@i = Vgl FaIVolra +(0 — ) Vid Vs
Applying the chain and product rules to g, gives

?U er = ?I}er a {r.ll'l'lz =T l;l;:}f{\.? |,1|lgn it [J-I";rl}l‘;'| rﬁn SB Fqlgn{];ﬂ{ ?ﬂ Iirfn = vl.l‘lll-l;n::l'
Setting = & gives

Va0s = V g (Vs + (4o — 0o Vig, (FaW b
+ ?\:Hn{‘d‘r_zjl:.vﬂd'r: = ?ﬂ‘;‘l—;]'
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Thus

VNV, 0=V, 05 = /(s — VLVedn Velrs — Vig WV,
We show that this is o,(1) by showing that /(n)(i)3— ) is 0,(1) and
that

VednValha—Vig, 0oV als—0.

To eslab‘iish the latler, we apply proposition 2,16 of White (1984). Given
assumptions OP(i), MX', DM'(i) and (ii), SM(i) and (ii), and NE'(i} and
(11), it follows from the uniform law of large numbers, theorem 3.17, that

Y = J0) =0 as.
and
Vol (8) =Vl (6) = 0 as.

uniformly on @ and that , and V), are continuous on @ uniformly in
n. It follows from theorem 2.3 of Domowitz and White (1982) that
Wa—n— 0 as. and Vi — Vit — 0 as. Assumption DM'(i) and (ii)
ensures that {7} and {VJ%} are O(1). Further, the continuity of V3g,
uniformly in n andthe fact that the mean values used in evaluating ‘F%.g,,
lie between 7 asd W} ensure that V2g,—V2g,(#9) —0 as, where
(Vg 00)} is O(1) given assumptions DMY(i) and OP'(i). It follows from
proposition 2,16 ofl White (1984) that

VidaValln=Vig i)Vl + 0 as.

Convergence in probability follows because the first term is measurable.
Next,

=T = ™ §: gt~ B2,
Define Z,, = A'(g5,— E(q2,)) and consider

VR =12 ¥ 7,
for arbitrary ie @, 2’4 = 1. Given assumptions DG, OP'(ii), DM'(i),
NE'(i), and MX/, it [ollows from lemma 3.14 that {Z,,} is a mixingale of

size — | and ¢,, = max (||Z,l, 1) < A < oo given assumption DM'(i). By
Chebyshev's inequelity



86 Asymptotic Normality

el 3 2l e <a([ 0T o
=1 A | L i
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Cvara~ 2 Y Zp<nT ' (nKAY = KA? < 0.
=1

!_I =1 = | ]

By McLeish's inequality

L( max [L7}) EY
I=jzn] 1 =]

|

as A, — oo, Hence, J{n A(e—7) i 15 0,(1) fer arbitrary Ae ', XA = 1,
1mply1ng that .J (m)(rg—1lry) s @,(1). Therelore, by corollary 2.36 of

White (1984)

JOVe2s—Vo02) = /s — PG e~ Vo) Vol3] 0
Next we show that {B~ "2} is O(1). For tis it suffices that {Bj} is
0(1) and uniformly positive definite. Unifomm positive definileness is
guaranteed by assumption PD(i), and it remains to show that {B} is
O(1).

Define Z,, = A'M?2,, where e #*, 1A = 1, and
M3, = Vol Vg0 ah — Elg) + [V — E(Vogn) ' VogF2)'

so that var(n~ Y28, Z.) = A'Bil Now

var (n' gL il Z,,,) =i lE([ ril 2"]1)
<wte(m | £2.)

Given assumptions DG, OP', DM'(i) and (i), NE'(i) and (i}, and MX/, it
follows from lemma 3.13 that Z,, is a mixingale of size — 1 (and a fortiori
of size —1/2) with ¢,, <A < oo for all n,t Applying McLeish’s in-
equality, we have

so that

w7y Z’"l = ﬂ.n:| < KAYAZ =0
=1

Thus {X'B24} is O(1) for arbitrary Ze @, I'A = 1, implying that {B"} is
of1).
We also have VO < oo, so that by corollary 2.36 of White (1984)
B, =12/ (n)Vo@5— Vo) — By 2\ /n)(Vy 0~ VB2
= By V2 /(n)(Vs 05— Voly 0.

We complete the prool by showing that

B,/ (n)Vo@s — Vo3 2 N(O, 1),
Now

By V2 /nXVo0s— V@) = n™ 2 3, B 12,
=1

Define Z,, = V'B;, ™ "> M}, where iR, 2'A = 1. We apply theorem 5.3,
Now ||Z Jl A <o, r>2 by the Minkowski inequality, because
{Veia}, {7 ,,{J,F,,}} and {V_ g (7)) are O(1) and assumption DM’
ensures th: r-lntr:gr.iblhty ol gy, and Vg7, uniformly in n, t. By construc-
tion, E(Z,) = 0. Given assumptions NE'(i) and (ii) and MX' 1Z,) is
near epoch dependent on {1} of size — 1, where {¥}} is mixing with ¢,,
ol size —r{r—1)or z,, of size —2r/(r—2). In this case,

]
vi= var ( v Zm)
1

n
= A'Bo~ Y2 yar ( ¥ M:,) B2 =g

r=l
= pA'BT VBT 112
=Mn
so that v, * = n™" is O(n~"'). Thus, by theorem 5.3
n
bt ). Za 2 N(O,1)
(|

for arbitrary 4 RB*, 2’4 = 1. By the Cramér-Wold device (e.g. theorem
5.1 of Whitz 1984), we have

By VA Jn\VoQs— Vo) A NO.I). o
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Proof of corollary 3.5
By setting @, = ©, it [ollows immediately from theorem 5.4 that {B}}
is O(1) and
By~ 12 /(n)(VoQF —Vu0X) = N(O, 1)
Now V,0, = (V,g,»¥,)V{, is continuous on © because of the con-

tinuity of V.4, rrz'm and V,,. Because @* minimizes ¢, interior to ® by
assumption ID(i), it follows that V,0F = 0. Thus

B V2 /(mV,0F A N(O,L). O

Proof of theorem 5.6(4)

Given assumptions DG, OP, MX, SM(i), DM.and NE, I!'rn{ﬂ]—aﬁlﬂ{ﬂ} —+
as. uniformly on @ and i, is continuous on @ uniformly in n by
theorem 3.18. It follows from lemma 3.4 that

Qn =ge I;';il
is continuous on @ uniformly in n and @,(0)—Q,(6) — 0 as. uniformly
on ©,

Proof of theorem 5.6(b)

[ i ! i) ard (ii M'(i} and (i), and
Given assumptions DG, OP, Mk, $M|[i] ard (i), D
NE(i) and (i), i () — () = 0 a5, uniformly on ©, ?ﬂrﬁi"[ﬂ}—?r_-.iﬁ,,{ﬂ] 0
a.s. uniformly on @, and i, and V,f, are continuous on @ unilormly in
. It follows [rom lemma 3.4 that

vﬂ@n = fvl.,'ﬂlﬂ % E!En:lvﬁrﬁn

is continuous on © uniformly in n and V,0,(0)—V,0,(#)—0 as.
uniformly on ©.

Proof of theorem 5.6(c)

Given assumptions DG, OP’', MX, SM, DM’ and NE, u,ff"t,r?}—@-_,,{ﬂ} -0
as. uniformly on @, Vb (0)—V,0(6) -0 as. uniformly jcm @,
V24 (68) — V2 (6) —+ 0 as, uniformly on @, and i, VyJ,, and Vi, are
continuous on @ uniformly in n. It follows from lemma 3.4 that

‘rl'll = vgg_h = ?f.llﬁ:;{?:gn s llﬁnlvﬂllyn + [?u-”n L] Iﬁn @ Jﬁ:}vllzllil;n
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is continuous on® uniformly in n and V2Q,(#)— A,() — Da.s. uniformly
on &, o

Praof of theorem 5.7

Given assumptions DG and OP, by lemma 52 0, = dn o\, satisfies the
measurability and continuity requirements of theorem 5.1. Given
assumptions DG, OP', MX', SM, DM/(i), NE'(i), and ID'(i), it follows
from theorem 3.18 that , — 8% — 0 a.s. where 0, solves mingQ,(#) a.s.
Given assumption ID'(i), {6}} is interior to ® uniformly in n. By
corollary 5.5, given assumptions DG, OP', MX/, SM, DM(i) and (ii),
ME'(i) and (ii}, ID'(3), and PD(i), there exists {B¥} O(1) and uniformly
positive definite given assumption PD(i) such that
B V2 {(mV,0% 4 N(0,1,).

By theorem 5.6(c), V*0,(f) — A,(0) — 0 as. uniformly on ® where A, is
continuous on O uniformly in n Further, {4*} is O(1) given the
domination condition, assumption DM’, and the uniform continuity of
Vg, and Vig, ensured by assumption OP'(i). Assumption PD(ii)
ensures that {47} is uniformly positive definite. The conditions of
theorem 5.1 are therefore satisfied, and it follows that

B V2Ar SN0, —02) £ NO,1). o
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