6 Estimating Asymptotic Covariance
Matrices

The asymptotic normality of the optimizatior estimators established in
chapter 5 provides the fundamental basis for constructing asymptotic
confidence intervals and statistics appropriale for testing hypotheses,
Such statistics as the Wald and Lagrange multiplier statistic require for
their computation either a knowledge of or aconsistent estimate of the
asymptotic covariance matrix of the estimator. As evident from theorem
5.7, this covariance matrix is of the form C} = A* “'B*4* " '. Because
A* and B* are generally unknown, we need consistent estimators for
them, say A, and B,; a consistent estimator of the asymptotic covariance
matrix can then be constructed as C, = 4, 'B, A, ', The results of
chapter 7 also require consistent estimators fcr A7 and B, The purpose
of this chapter, then, is to provide general conditions compatible with
those of the preceding chapters which ensure (where possible) the
consistency of useful estimators for A¥, A}, BYand By,

Sufficient structure is already available to give consislent estimators
for A} and A¥. We have the following result.

Theorem 6.1

Given assumptions DG, OF', MX, 5M, DM, NE, and 1D
Vi0 —A* =0 as
Vig —A2—0 as.

where Vi0, = V;0,(0,) and V30, = Vi0Q,(0). o

Our task here is complete once we have availzble consistent estimators

for B* and B,
Finding such estimators is an interesting challenge. Recall that
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. ]
B = wr(n i oy Mﬁ!)
=1

=n"! Y E(MI M) +n~"
=1

a=1

1=

LEMuMG, )

7

t=11=t
+E(MS, - M)

Thus 8] is the sum of n(n+1)/2 terms, while we have available only n
observations. Without further information, it will generally not be
possible to estimate B consistently.

A variety of different circumstances arise which do provide us with
information which will allow consistent estimation of an important
component of . The simplest such circumstance arises when {M:, F)
is a martingale difference sequence. In this case, the elements of M;, are
measurable-F,/E and E(M?Z|F ') =0 as. Using the law of iterated
expectations, we have for all > 0

E(M My, ) = E(E(M2M2,_.|F~Y)

= E(B(M7, | F )M, )
=0

Thus in this case, we simply have
i .
By =n~''} E(MZM?).
1=1

Such situations arise when one has independent observations, or in
certain cases in which the model under consideration is not subject to
dynamic misspecification,

To consider consistent estimation of B} in this case we decompose
M, as :

e

M = 5, — E(S5)
where Sy, is the gzneralized score,
S = Vol ViauWdn + VoanV 9,005

In general, E(S},)need not equal zero, although in special cases in which
the model is correctly specified or in which the observations are
generated by a siationary process we may have E(52,) = 0. Otherwise,
E(S5) will be unknown, and as pointed out by Chow (1981) it will not be
possible to estimate that component of B2 which we now write as
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Ut —n=' S E(S%)E(SE).

=1

However, it will generally be possible to estimate
]
B+ US=n"1% E(S:.5%)
=1

As in Eicker (1967), the basic intuition is tkat if Sy, were observable, then
B’ + U? could be consistently estimated by

B,=n"1% SLSw
=1

Unfortunately 82, is not observable becawse ) is unknown; however, it
can be estimated by

Sue = Vol Vigu( s+ VoV y9ul)
Whﬁfﬁ *iu = "'?:{Hr:}r ?Eqnt = vﬁq:{a‘n}- IF" = E#MEHAL Elﬂd ?I?J;n = ?ﬂl}r’n[gn}'
This suggests consideration of the estimator

L]
B.=n"'Y 8.5,
=1

In fact, when { My, F'} is a martingale difference sequence, lhi_s e_stimamr
is consistent for B®+ U% under conditions ziven below, and similarly

B.=n! i 5.5
=1

is consistent for Bf + Uy, where

Snr = ?ﬂﬁlviﬂn[lﬁn}‘?m+?ﬂ“?:lvw§i{lﬁn}r
with E?rl: = t?,[g,,), 1"':'F!F‘Tm = ?ﬂq:{&n}- ];fj“ = ‘,h'[ﬁr.]'. and ?ﬂ]ﬁn = vﬂ*&n{gn}; and

Up=n~" Y E(SRESY),
=1

with
S% = Vb 2'Vig (FHak + Vean Valbz).

In order to prove the consistency of B, and B, further structure is
required. The nature of this structure can de appreciated by considering
the computationally infeasible estimator B, suggested above,
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It is reasonable to expeet that B, — E(B,)-5 0 (note E(B,) = B2+ U®) by
some suitable law of large numbers, and indeed this convergence
underlies our proof of the consistency of B, In fact, no such law of large
numbers is yet available here. With the structure presertly available, we
have that {5}, } is mixingale of size — 1; however, we nesd a law of large
number; for the elements of {878y} and these are not necessarily
mixingales. Even if we succeed in ensuring that the elements of {5%,8%)
are mixingales, we still face a further problem: the summands are
doubly ndexed, while the strong law of large numbers for mixingales
provided by theorem 3.15 applies to singly indexed summands. A
strong lew for doubly indexed sequences is not easily available; however,
a weak law of large numbers can be proven quite easily under weak
conditions. Because convergence in probability suffices for subsequent
results, ve use this weak law.

In orcer to ensure that the elements of {59,5%} are indeed mixingales
of the proper size, we rely on corollary 4.3(b), which gives sufficient
conditions for products of near epoch dependent functions also to be
near epcch dependent functions, We apply that result by letting Y, Z,,
be products and cross-products of the elements of g7, ard Vg2, In order
to satisfr the integrability conditions of corollary 4.3(b), we strengthen
assumpton DM’

Assumpiion DM"

(1) The elements of {g,()} are 2r-dominated on @ uniformly in
=l aeids

(ii) The elements of {V,q,(f)} are 2r-dominated on 9 uniformly in
= s

(iii) The elements of {Vig,(#)} are 2r-dominated on ® uniformly in
|ty b o

Assumption DM"(iii) is not needed immediately; however, it plays a
crucial although somewhat different role in establishing the consistency
of B,, and we impose it here for convenience.

A weac law of large numbers for double arrays of mixingales is the
following,
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Theorem 6.2

Suppose {Z,} is a double array of random scalars such that ||Z_ ||, <

A < o for some r= 2, and E(Z_) =0, n,t=1,2,... . If {Z,} is near

epoch dependent on {¥} of size —1/2, where {¥} is a mixing process

with ¢, of size —r/(2r—2), r 2 2 or a,, of size —r/(r—2), r > 2, then
=1%n 3 #

n~ B Z,—0. o

Recently, Andrews (1987) has given a more general weak law of large
numbers for double arrays of L -mixingales 1 < p < co. Although we
do not pursue the implications of Andrews's (1987) resulls here, it
appears that these results may allow proo’ of versions of the resulls
which follow under weaker moment and memory conditions.

Theorem 6.2 will be applied to products and cross-products of the
elements of g%, and Vg%, In order to ensure that these are near epoch
dependent on {¥;} of the appropriate size (—1/2), we strengthen
assumption NE".

Assumption NE"

(i) The clements of {g(#)} are near epoch dependent on {¥} of size
—(r—1)/(r—2) uniformly on (&, p}.

(ii) The elements of {V,q,(f)} are near epocy dependent on { ¥} of size
—(r—1)/{r—2) uniformly on (@, o). o

Note that as r — oo, we approach the size requirement (— 1) imposed in
assumption NE'.

Because the proofl of consistency of B, relies on being able to take
mean value expansions around 62, we complete assumption ID' as

lollows.

Assumption [D'

(ii) The sequence {Q,(0)} has identifiably unique minimizers {07} on
{©,}, where {63} is interior to ® uniformly inn. o

The need for assumption DM"(iii) arises from the appearance of second
derivatives of g,(fl) after taking the mean value expansion around 0.

We now have sufficient conditions availible to state our first con-
sistency result for B, and B,
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Theorem 6.3
Civen assumptions DG, OP', MX, SM(i) ard (ii), DM", NE", and D)

(z) If {M, F'} is a martingale difference s2quence for all n = |
then { U7} is O(1), positive semidefinite, znd

B,—(B3+Up)—=0,

where B, = n='27_, 5,5, and Uy = n~' Er_ | E(S%)E(52).
(B) If {M}, F*} is a martingale difference sequence for all n = i e
then {U*} is O(1), positive semidefinite, and

B,—(BY+U¥-50
where B, = n=1X¢_, § & and U =n"LZr_ | E(S*)E(S%). &

Because Uy and UF are positive semidefiniie and do not vanish in the
presence of heterogeneous observations and misspecification, this result
provides at worst a basis for constructing conservative hypothesis
tests. The reason for this is that A '8 A-! will be consistent for
A TIBYAY T AX U AX T, which will always overestimate Ct=
A;~'B¥A* ~! by the positive semidefinite matrix DY = A" tUr4* L
(The use of the symbol DF can be thought of as a mnemonic for
“discrepancy.”) This point is incorrectly treaed in White (1983).

The present result generalizes results of Eicker (1967) and White
{IF"ED} for the linear, independent, correctly specified case and results of
Nicholls and Pagan (1983) for the linear, martingale difference, correctly
specified case to the nonlinear, martingale difference, possibly mis-
specified case. The underlying method of proof is essentially-the same,
however.

similar results are available for situations in which E(M2M®,_ ) =0
f{l;;| all T > m, where m is a known finite integer, m = 1. For this case we
cnoose

L] n

Eﬁ = ”‘-1 :_zl ISIIr\lrsl‘lnr + "_1 21 ZI- i [Srllgjn.:—t-l_‘gn.r—tg:::] {6”
= t=1gmy

5 - : ) i s !

H.n =n llzl Sﬂlé"m +n ; El E % ]:'F'ngﬂqf_t +S‘H.I’_t|§:f]' {52]
= ] e

Ths result for this case is the following.
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Thearem 6.4
Given assumptions DG, OF, MX, SM(i) and (i), DM"”, NE”, and 1D
(a) WEMME,_)=0forallt>mn=12,..., then {U5} is O(1) and
B—(B+Un)-So,
where B, is given by (6.1) and

Us=n'Y BSeS)+nt Y Y [E(SLIESS,-)
=1 = =%+l

+ E(S5- JE(S;)]-

(b) If E(IMEM*,_)=0forall t >m, n=12,..., then {U*} is O(1)
and

B,—(Bf+ U0,
where B, is given by (6.2) and

U =nt Y E(SDESE)
=]

m n

T El ZH[EIIS.TJE{S:.'HJ+E(3L~ JESH)]. o
E=LI=t
Estimators of the form (6.1) and (6.2) have been proposed by Hansen
(1982) for the nonlinear, stationary ergodic, correctly specified case.
The present result applies in the nonlinear, dependent heterogeneous,
possibly misspecilied case.

This case presents practical difficulties not encountered in theorem
6.3. Specifically, U and U} are not guaranteed to be positive semi-
definite for any i, so that conservative infererices based on A, ‘B, A"
are no longer necessarily possible. Further, nothing ensures that B, or
B, are positive semidefinite, although when U* = 0 (U? = 0) then B,
(B,) will be positive definite for all n sufficently large, almost surely.
Nevertheless, in finite samples B, and B, cin be quite badly behaved.
Another serious practical difficulty is that m is required to be known.
Such knowledge may be available in special cases, such as when the
investigator exploits the m-period ahead prediction errors of a correctly
specified forecasting equation to estimate perameters of interest, but in
general m will not be known, nor will it necessarily be known that such
an m exists.
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In the general case in which E(M2M?',_.) does not equal zero after a
finite. number of lags, it is nevertheless possible to obtain useful
mtimlﬂ‘tcrrs by using the fact that the near epoch dependence and mixing
wnditions imposed earlier imply that E(M7 M, ,_) converges to zero
as T becomes arbitrarily large. This suggests that it may be possible to
cbtain a useful estimator by neglecting large values of tin forming B,
md B,, as in the estimator suggested by Domowitz and White (1982):

= "o Him n
B, =n" Z Smg:nt"'”_l Z E [Enrg;l.l—t'ingh.l-‘-rg:u]
ey = lamr+ |
Tﬁh_r:re M, — o0 as n - co. By requiring that m, grows at the proper rate,
It 1s possible to ensure that the neglecied terms never become too
mportant. Jusl as in the immediately preceding case, B, is not
glaranteed to be positive semudefinite. However, MNewey and West
(1987) have shown that it is possible to guarantee positive semi-
d:ifmileness by introducing appropriate weights {w, ) and forming
eslimators
N

~— - n ] - mr‘ —
B, = Wpn~! tzl SITu:“:‘;-nr i Z W Z [S[n:S;,: et Sn. o
= =1

feErd]

(6.3)

By=wan™} Y 58t nt Y wae B 18,8048 S
t=1 =1 =t i % il

(6.4)

Tn be uselul, the weights must have two properties: ther must ensure
the nonnegativity of A'B,A and 2'B,A for any 4e @, and they must not
inlerfere with the convergence of B, and B, to the approprate limit. The
[ollowing lemma allows the construction of weights which will ensure
the nonnegativity requirement.

Lemma 6.5

Let {Z,} be an arbitrary double array, and let Wb =200
i=1,...,m,+1 be a triangular array of real numbers. Then for any
trangular array of weights

Wi 1

W = :)_J e el n=12..., t=1,..,m,

£=:+1 R ni=1
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we have

n

n My
¥.=w, Z Z242 E W E Pl L ) ]
=1 =1

=t+1

We apply this result by setting Z,, = A'S,, for arbitrary 1 8% For this
case W, = A'B,A =0 so that B, is positive definite as required, and
similarly for B,

To ensure that {w, | does not interfere with the consistency of B,
further conditions must be imposed. I is reasonable to anticipate that
such conditions will include the requiremert that for each t = 1,2,...,
w,, — 1 as n — oo, One such sequence of wegghts, related to the Bartlett
(1950) sequence, is given by Newey and Wes: (1987), namely

Wy = 1—1f(m, 4 1),

which arises from the choice a,; = (m,+1)" foralli=1,...,m,+ 1. In
fact, this choice of weights does yield a consistent estimator under

appropriate conditions.

In this stationary case, the problem of estimating B, is essentially the
problem of estimating the spectrum of a time series at zero frequency.
Anderson (1971, chapter 8) discusses a varizty of different approaches
for stationary time series, each of which esentially invelves different
choices of weights (windows). Here we seel results for heterogeneous

processes.
The strategy of our consistency proof for B, is straightforward. Let
{Z.} be an arbitrary double array of random k x | vectors. We define

M
B, = var (n' i ;21 Zr.:)

and impose conditions on {Z}, m,, and weights {w,.} to ensure that
B.—B -0 asn—w

where

HI'I:wnﬂ”_t i E[zﬂlz.;l}_i_n_l E M i E{Zﬂfz:‘-f‘l']
=]

=] f=rd}

+E(Z,, - Z)-

Then, setting Z,, = 5% we show that B, —Eﬂ—Prﬂ under appropriaie
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conditions. Our first result establishes conditions easuring that
B.—B, -0,

Lenima 6.6

Lel {Z,} be a double array of random & x | vectors, kefV, such that
| ZuZnllyy2 < A < oo for some r > 2, E(Z,) = 0,n,t = 1,2,... and {Z}
is near epoch dependent on {¥} of size —1, where {¥}is a mixing
secuence with ¢, of size —r/(r—1) or a,, of size — 2r/(r— 2). Define

L]
B, = var (n"” V3 Ff,,,),
r=1

and for any sequence {m,} ol integers and any triargular array
{woin=1,2,...,7= l,...,m,} define

[T m
Bn = Wrm”_ A E E{zmz:u}
=1

iy "

+ mn = z Hrﬂ‘l‘ Z [E{-Zlﬂz:hf o F} + El::zn.l' = TZ:I }]'

=1 =11

+

Ifm,—wasn—oo, il w,|]<An=12.. 1= 1,...,m, and if for
eacit, w, . — | asn— oo, then

B,—8,-0 asn—-cw. 0O

}\Inle that the moment, near epoch dependence, and mixing conditions
imposed here are the same as we impose in stating the central limit
theorem. Given these moment and memory conditions, the conditions
on m, and {w, | are as previously anticipated: we require 1, — oo and
for cach 7, w,, — 1. Also note that we allow dependence of Z,, on past as
wellas future values of V.

Cur next result is an intermediate lemma analogous to lemma 6.19 of
White (1984). Part (b) of the present result corrects an erro- in White's
lemma pointed out by Newey and West (1987) and Phillips (19835); this
error underlies the incorrect rate for mr, given by Domowitz and White
(1982) and White (1984, theorem 6.20).

Lenma 6.7

Let {Z,} be a double array of random k x | vectors, ke, such that
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Z4Zull, < Aforsomer > 2,nt=1,2,... andlet
U = sup, sup, |2, — E: 2 (Z 2

where Ei*m(:)=E(-|Fitm, Fiin=a(Viom-; Viiq for a given se-
quence of random vectors { ¥}, Fori,j = 1,...,k define
el =2 Zn.:r-r.j'"E{Zmizn.:—r.j}'

riT = “~nki

Then

{a) Letting ¢, and z,, represent the mixing cozfficients associated with
{¥}, for fixed T and all m = 61

el 1= 1f ~2)Hr=1
|E(ESET el < Kol r.y.u}"“ J“r N or
< K, Ez_ L . L’E:,_ 2fAr— ”}

where K, < oo and I, = [([m/2]—31)/2].

Suppose further that {Z,,} is near epoch dependent on {V;} of size
—2(r—1)/{r—2) and that {¥} is mixing with ¢, of size —r/(r—1) or «,,
of size —2r{(r—2). Then

(b) Forallz = 0,i,j=1,....kkn=1.2,...
" 2
E([ T ﬂi;} )5{:4— A,
[ el 8

where A, < .
(c) Forallim=1,2,..s, Lf=1,...k givenanye > 0

P|:n"'i i Crte
=1

(L R4
Finally, if m, = o{n'™®)and |w,| € An = 1,2,...,7 = 1,2,...,m,, then

= E:I < Am*f(n®)+ Amd/(ne?).

(d) Foralli,j=1,...,k
Mn

HEA N W En: b sy T

=1 t=r+1

We now have available results which will allow us to prove consistency
of B, and the analogous estimator B, for B+ Uy and By + U} res-
pectively. These results require us to streagthen our near epoch
dependence conditions in the following way.
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ﬁssumbtiun INE™

() The elements of {q,(#)} are near epoch dependent on { ¥} of size
—2(r—1)/(r—2) uniformly on (®, p).

(i1) The elements of {V,q,(d)} are near epoch dependent on { ¥} of size
—2(r—1)/(r—2) uniformly on (@, p). u}

Our conditions on the truncation lag m, and on the weights {w,.) are
formally expressed in the following way.

Assumption TL(truncation lag)

{m,} is a sequence of integers such that m,-+o0 as n-+ o0 and
m,=0H"), o

This assumption replaces the incorrect rate m, = o(n'’*) of Domowitz
apd White (1981) and White (1984) with the appropriate rate m, = o{n''%)
given by Neweyand West (1987) and Phillips (1985).

Assumption WT (weights)

For a given sequence {m,} define
At 1
Wee = Z iy =
FETE S

where {a,,}, n=1,2,..., A=1,...,m,+1 is any triangular array such
that |w,,| <A <oo,n=1,2,...,t=1,..,,m,, and for each 1, W, — 1 as
H— ol ]

The desired consistency result can now be stated.

Theorem 6.8
Given assumptions DG, OP', MX', SM, DM", NE", ID', TL, and WT:

(a) For all n=12,..., the matrix B, given by (6.3) is positive
semidefinite, Uy is positive semidefinite, and provided that

V)@, —0m=0,(1),
B,—(B2+UyL0,
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where

i

+n'1=zn

=1

Wor Z [E[S:r}E{S:. —ut £( S:. = 'I:,}'E{S:l}:] k
r=r+ 1

(b) For all n=1,2,..., the matrix B, given b (6.4) is positive semi-
definite, U¥ is positive semidefinite, and

B,—(B¥+U¥) -0,

where

Ut =w,n" i E(S*)E(S%)
=1

gy M

+n~t E Wie Z [E{S:}E{S:l-’t
1

rE=] =g+

+E(S3,-JESY)]. o

Note that conclusion (a) requires the addtional condition that
\/ (n)0, — ) be bounded in probability. This condition is automatically
satisfied for \/{n}[g,,—ﬂ:} as a consequence of asymptotic normality;
however, asymptotic normality for J (n)}((7,— ) has not been estab-
lished. Nevertheless, under general conditions \/{n}{ﬁn—ﬂ’;] will be
bounded in probability as required. These are given in the next chapter,

Note also that although Uj and U¥ are gueranteed to be positive
semidefinite for all n, there is nothing to ensure that {U7} or {U#*} are
0(1). Thus, although conservative inferences will be feasible, the actual
(and unknown) size ol a given test will decrzase with n. Sufficient
conditions for {U3} or {U%} to be O(1) are thet {X,} be a stationary
sequence and g,(() depends on t only through a measure preserving shift
transformation T, Le. g,(m, 8) = Q[T w, #), or thal the model is correctly
specified. Either of these conditions ensures that E(S%) = O or E(5),) =0
so that Uy and L7 vanish,

While the present results establish some mirimal conditions on m,
which ensure consistency of B, and B,, they provide almost no practical
guidance as to how m, might uselully be chosen in applications, It is
possible that some sort of cross-validation technique (Stone 1974)
might prove helpful. However, because of the very large samples which
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might be required even for cross-validation to be helpful, it may be
more advisable 0 attempt to improve the dynamic specification of the
model so that MJ, is more nearly a martingale difference sequence,
ratlher than attempting to adjust for a poor dynamic specification by
using theorem 68 to estimate B or B* consistently.

MATHEMATICAL APPENDIX

Proof of theorem6.1

Given assumptions DG, OP', MX, SM, DM’, and NE, it lollows [rom
theorem 5.6(c) that V30, (0)— A,(0) — 0 as. uniformly on @, and A, is
continuous on @ uniformly in n. Given assumiption ID also, it follows
that f, — 5 — 0 &.s. and f, — 6 — 0 a.s. It then follows from theorem 2.3
of Domowitz and White (1982) that V30, — 43— 0 as. and V20, —
A* s 0as. C

Proof of theorem 6.2
By Chebyshev's inequality, for any & > 0

pllre gzl oe]<x (] £ 2] ) e
<5(,m | 5,2.]) me

Given the conditions of the theorem, it follows from lemma 3.14 that
|Zw} 1s a mixingale of size —1/2 with ¢, < A < oo for all n,t. By
MecLeish's inequality

2
E( max [ i Zm} )a‘;'; KnA*?
l=j=n| =1

s0 that for arbitrary & = 0

2|

asn — oo, thatis,» "' I, Z_-50. o

nELN T

=1

= E:' = KA et =0
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Proafof thearem 6.3(a)

Because { M2, F,} is a martingale difference sequence

n L
B mr(u‘m Y M:,) =n"'Y E(MMZ)
=1 =1

il

— 'Y BT —nt Y E(SESS)
=1

t=]
=n"1Y E(S:S4)—Us
=1

where U2 = n~ ' X7, E(SZ)E(SY,). That {U7} is 0(1) follows immediately
from the fact that |E(5%) < A for all n,t = 1,2,... given assumptions
QP and DM". That U? is positive semidefinite ollows because Uy, is the
average of positive semidefinite matrices E(S%,)E(Sq,). It follows from the
last equation above that

Hn_{ﬂg I U:} =n"! E gmg;l_"_l E E{S::S:; 3
t=1

=1

Now

Sue = VeV GG+ VoduV o

= ?ﬂ]?';:'lvllzaﬁnﬁm + {vvg‘ﬂ ® JkJFrm

by applying the equality vece{4BC) = (C' & A) vec B to the second term
of §,,, and writing Vg, = V,g,00,), V2, = Vig(ih,), and 7\, = vec Vyd,,.
This can be written more compactly as

Srll == Gng;n]'

where G,, = [T"ﬂlﬂ?ﬁm "?wﬁ,. & Ii;] and E.:u = I'[.-ﬁn Fm]
This allows us to wrile

" i
veen=t Y, 5.8 =veon™t'Y G.3,5.0;

=1

It
o

Similarly, we can write
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veen™" ) E(SSt) = (G;@ Gn™" 3. vec (st

=y

where
Gl = [Volia Voagalin), V0,007 ® 1]

and, setting 5, = vec V,q5,, we write 5% = [¢%, r%]. Thus
vec[B,—(B;+U,)]

=(G@CIn" Y vecs,5—(GL@GIN™" Y wecE(sst).
f=1 r=1

The desired result follows from proposition 2.30 of Waite (1984)
provided taat G, —G*-5 0 and

n
Sl =0 Y vec E(sZsi) -0

for O(1) sequences {G;} and {n™' Z[_ | vec E(s},s%)}. Assumptions OP’
and DM" ensure that these sequences are O(1) as required. Further,
G,—G,—0 as. by lemma 34 of this work and theorm 2.3 of
Domowitz and White (1982) given assumptions DG, OP', VX, SM(i)
and (i), DM", NE", and ID.
It remains to show that
n~' Y [vecd, s, —vec E(s%s")] 0.
r=1

To establisa this, we apply lemma 3 of Jennrich (1969) and take a mean
value expansion of a typical element of n ' Zf_ | 5,5, around 2, Let §,
be a typica; element of §,,. Then given assumptions OP' and ID"

;] ]
-1 i ~ — . -
f Zl SpiSuj =11 Y Spushy+7A0,—02) aan as
= |

where 7, isthe | x k gradient

Ty=N z 5,.:[?515',.”1 =+ Sm_fvﬂgr::h

=1

where 5., i, VoSun and V5, are evaluated at a mean value lying

between , and 6. (In the mean value expansion, , is replaced by a tail
equivalent sequence, but for convenience we do not change notation.)
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Hence
n! ZI [SriSney — ESnriSney)]
=n" Y [stusuy— EGrusr)] +7,0, 00 aan as.
£=1

Now (J,—02) — 0 a.s. from theorem 3.19, and secause {7, is measurable
by theorem 2.2, it follows that (f,—02) is o,(1). Next, 7, is 0,(1). This
follows because a typical element of 7, say 7, =n" ' L. | 5,(3/00,)5,,;,+
Emj{afaﬁh}gnm has

Zall, < n™° Zl Scill 2 @ GOl 21 15112 O/ OOl |2

WA <

where the last inequality follows from the domination conditions
imposed by assumption DM". Boundedness in probability then follows
from proposition 2.41 of White (1984). Thus, #,(,—02) is o0,(1) by
exercise 2.35 of White (1984),

Finally, consider

n
no : Z -“::.--ﬁr;—ffé‘ﬁr I'IIJ']'
=1

Given assumption DM”,

||S:n'3:r;_E{fmi5un:j}”r = 2”-‘5‘:”5:,-_;”,
< 2lispeillzellshed 2
=2A<w

for all n,e=1,2,... . Further, given assumptions DM"” and NE" it
follows from corollary 4.3(b) that {s3,s5,— E(sh,sn;)} is near epoch
dependent on {;} of size —1/2. By assumpticn MX, {¥;} satisfies the
mixing conditions of corollary 4.3(b). It [ollows [rom theorem 6.2 that

il
i ) s:r:-?::j_mrﬁgriﬁ:u}i' 0.
=1

Thus
i Zl Sty — Elssi) 0
(L

and the proofis complete.
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Proofof theorem 6.3(b}

The proofis idertical to that for theorem 6.3(a), with @, replacing 7. and
0¥ replacing 5, o

Proof of theorem6.4(a)

Using the same rotation as in the proof of theorem 6.3(a), we have that

vec [ B, —(B2+ U]

- [EG:. ® CJn~" Y vecS, S,
L =1

—(G @G~ ! i vec EESLS:}}}
tey

et ]

” jz [{G;@ Gn}”_j Zn: 1""E'”'—*'S'.nls"':l,r—-t

_[Gﬁ‘ @ Gﬁ:m_]' }H: yec E{S‘:lsﬂ:r—t}J

+ i [[ﬁ;@ Gn~! i vec S, .8,

=] f=g4]

(G @G Y vec E{S‘;..-.Sﬁil]-
[ |

The argument is identical to that for the proof of theorem 6.3(a)
with 8.5, . replacing 8,8, and $2,8°, . replacing $2.8°, for t —
0,1,...,m < co, This establishes that all the terms in square brackets
above vanish in probability, so that

B —(B:+ U350,

Proof of theorem €.4(h)

The proof'is identical to that for theorem 6.4(a), with , replacing &, and
0% replacing 2. o
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Proaof of lemma 6.5

Givenadoublearray {Z, .t =1,...,n,n = 1,2,...}, define

[z, 0 G
Zias 2y 000 e 0
Zi oFn e i e 20
Z" = Zn,n z::.n-l zu.n—z zn.n—m..
{H+m,1}><{m_+l} 0 zn..ﬂ Zn,n*-t S I‘z.l1.|'|—rn|1...+l
ﬂ D zn.n LA zn,n-m"+2
W e Lz
and definea"=(a, |, a4, 5,...,a, 5 +,). Weshew thaty, =a"Z" Z%" > 0.
Mow
22 =Tz, L=kt
"
o= ey
i J'=|E—ZJ']+I R e B e TRl Ji
50 that
. matl Mgt 1
a"z"Z'a" = ‘Zl ;;1 Bl
ma+ 1 Mo Mt
= iz; ﬂaﬁﬁ4—2 E; E: ﬂwﬂn: :ﬂ” :
P |
— z (E zﬂ)-f—z E” Z ﬂ'mﬂ"; =
"
*‘( E: ELuznr—{)
I=t+1
n My h
= Wu, 3 z::"'z E Wae Z znlzn.[—:
=1 =1 (L LLs
= ¥m
with
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Hencey, =0. @

Proof of lemma €.6

Given the definiions of B, and H,, we have

B,—B,=(1—wn~ Y E(Z.Z.)
(N

-+ mz (1=w,)n ! i [E(Z.Z, - J+EZ, . . Z.)]
=1

s

n=1

]
0=t N Y [BZaZl, J+HEE, - 2L
t=mptli=rt]

Given that || Z;,Z,|l,;; < A, r > 2, it follows that {n~* £I_, E(Z,,Z.)} &
O(1), so that w, — 1 implies that the first lerm above vanishes a;
n —+ o0, The result follows by showing thal the second and third terms
vanish.

Let &, = Z,,Z, -, ; be a typical element of the matrix A AL

show that the second term vanishes as n — oo, it suffices to show tha:
forif=I1.....&k

Z" (1—van™ 3 EEH) -0

t=]

MNow
R B < ¥ l-wahnt 3 |EEY)
| =1 =t+1

Letting Y, = E::”[EE] {Zﬂl,_,._,-] we have
FE{ntr |E{Zmﬂzn =1, J}!
= iE[zH” };Ir_r + z.ITJ'!{Zn f=nj— rﬂlrj,}.]l
5 |E{zn:i L134] |+‘£‘.{Z‘1“ A, l—l:.j_ };HJ]M'
Now the fact that ¥, is measurable-F'~** %2 implies
E(Z i Yo )| = |E(E(Z g Ve | F 7 F T2
= [E(B(ZlF T3 E
< |BZ,lF TR (1Y e

By the law of iterated expectation and the conditional Jensen's
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EFI.CEIUEI.HI} ”};n‘jlli = “Zn.r—:,J”:'. and h}r Jensen's jnchﬂle}- “zn.l—t.j”l
< ||Z,, -l < A < co. Next, squations (3.3) or (3.4) imply

IEEPZ, M2 < 2 NZ el + vpgay O
s f‘:‘Iﬁﬁ]’rr||zm.-||r+U[:;4]-
Thus
|E(Z i Vo)) < AQAG LAY +0pyay) o
< A(SA|gip "+ vpega).
Next, equation (3.5) implies
I Z il Zo,t—c, ;= Yore)) S WZnaill 2NN 25, 0 — ¢, j— Yosll2
< Avpm
= éu[rm.
The last inequality follows beciuse v, is decreasing inm. Collecting the
inequalities above yields
B < ARAG{]" + 2004y OF
< A(SAafiiy "+ 2op).

This implizs
[i] : il .
nt Y EE<at Y ARAGLY + 2004
=i+l =+l
< ARADL" + 20y oF
= ﬁ{iﬁﬁfﬁ}{] L EU[T;4]}.

It follows that

=

T,

(1=wn? i E(EY )

1 t=t+1

n LV]

T

]

= 121 E “’n:iﬁu'}llﬂr}"il]# a7 EU[f;.qj} or

g
< Y [1—w JAGSAxl 7{" + 20p )
=]

Taking limits on both sides gives

Mg n

Im |} (L—w,n~' ¥ E(&L)
1

R=+ca |p=] =¥
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< lim Y [1—w,JAQAGL +20) or

A=+onp=]|
< lim 3% 1w AT + 2051,
Now
ZZ 1= Wl ARAGL 7" + 20pyya)) = J : Si®)dufe)

where y is counting measure on ‘he positive integers anc

Jle) = e < magll =Wl ARAG LY + 200, 147).

We apply the dominated convergence theorem as in Newey and West
(1987) to show that [ f,(t) du(z) converges to zero. Now for each 7 & i,
the requirement that w,, — | ensures that fi{t) = 0 as n— . Further,
because [w,| < A, | f(z)] < | f(1) lor all r and n, where

T = (A+ DARAG Y +20p47)

is integrablz, given the size conditions imposed on ¢, and v, which
ensure the fniteness of the sums mvolved in

f T(@) dufx) = 21 (A+DAQAG{7A + 205/ay)-
o =

It now follows from the dominated convergence theorzm (e.g. Bartle
1966, theorem 5.6) that as n — oo

J‘mj;{r} du(z) — 0.

A similar argument applies with 9[+/4] replacing @y, sothat

Y (I=wyn! Z E(E)| =0 asn— oo,

=tk t=r+1

thus ensuring the convergence to zero of the seconc term in the
expression for B,— B,
MNow consder the third term,
n—1 il

M= [E(ZwZ, - )+ E(Z,, - .Z,)]

Emntl =]
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It suffices to show that

nt Z B

r=my+1r=t+1

— ) asn— oo,

< 3 Aty |EE

n='1 ]

‘u‘i Y 2 EED

t=mytlt=t+1 t=mptl R |
n—| n
< ¥ n' Y AQRAGLGS +204) or
t=mnt 1 1=l
n=] n
< ZH”_I, Ela{saaﬁﬁﬂ 4 200 a)s

using the same inequalities as above.

Because
t:"gl“ E+ ARAG "+ 20z))
¥ i B =E+  ACAG L]+ 205)
_:Z: no Ii : A2AGLT" + 2opeay)

and because the size requirements on ¢, and v, ensure the convergence
of the two sums on the right above to the same limit provided m, — oo
as i —+ oo, we have

lim
A=+1

= Sk

t=g+1

A similar argument applies with ¢f, 4 replacing ¢pqp. so it follows that
the third term in the expression or B, — B, converges ta zero, and the
proof is complete, o

Proof af lemma 6,7(a)
Eij

For notatioaal convenience in wlat follows, we write &, in place ol £4..
For fixedr and all m = 6z, set

s L=m+1
‘Er-r-ﬂ.f =EiC h'1+t—E'Hl.-lJ el
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so that

[E{'fn"ir—nr‘-r.r” — |E{|:h£r—m+l:.|:+£|t{'¢r—mFr,r_a‘-ﬂl'FT.rHl
= ‘E{'ﬁﬂfr—ﬂli-'r,l'"-l-|E{"'=:I:[€!'“m+l:.'l:_$l‘—m+'l.i}}|'

Because £, _,, ., , is measurable-F*— "+ +[m2]

|B(E e — s, S IEM T IEE N IE el
SA||EfmrIm2le )

using the same logic as in the proof of lemma 6.6 and using the
fact that 1&—yss,dl2 < I€-mtedll2 < il S A for 7> 2 given
125 Zll- = A. 3y the same reasoning as in the proof of lemma 3.14

B I E N < 280, 7 Il —EiEE Q2 or
lf2—1 -
= Sﬁﬂ‘r'f 'Ifr“l" ”Gt r+ ‘é:'rm]

where [ = [([m/2]1—1)/2]. Let I, = [([m/2]—31)/2] < I... Applying
lemma 4.1 with the same choices fﬂrb and B as in the preof of corollary
4.3(b) with ¥, corresponding to Z,,_. ; and Z,, corresponding to Z,,
yields

e~ BN < = BEEE Nl < Kyof 77200,

where K, < o is a finite constant given the available moment con-
ditions. Becaus: ¢,, and a,, are nonircreasing in mand because I, < [
we have

M= IV O < ARl K of -2

ﬁzqﬁ’ |,".r_i K UEF =1 or
ﬁﬁajz—lfr_‘_K Er—zlﬂ{r 1)
ASa

;z 1jr +K,of - H/r 1)

MO I

Next,

!E{ért{q'l—ﬂt"'f.l '_El—m A4 r.t}}l E ”GrJl]”ﬁ:—mJ-r,:_ a'—m+|;, 1;“2
= ﬁliil—mi t.r_Et—m+r1:”2*
By reasoning similar to the proof of corollary 4.3(b), we obtain

”*f;—mh.f E: —m4r, ;”3 < Kyt [:m.-'ljmr 4
<Ko~ 2r~2)

where the secord inequality follows because v, is decreasing in m and
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[m/2]— =1,.. Combining the irequalities above yields the desired
result

|E{E;¢:§! =m+1, 1:.“ = Kl-’{'i:r.: Ir + u&:—l}ﬂir_ 2]} of
= K.,{ccf“fz— fr +u$’"2w{"3}

for K, < oosufficiently large.

Proof of lemma 6.7(h)
By the triangle inequality, for fixedt

n 2
E(I:|=Z+1£n])_ (:-*Z et2 Z:Hr-Ei Setr "H'”)
< 3 HD42 T 5 i men)

m=Epd] =
By lemma 6.7(a) for m = 61

JEG e, ) < Kol h.L o =2y o
= Kn{a}_{l— 2 +Utl—21mr_1}},

where I, = [([m/2]—31)/2], whilebrt < m < 61

|E(G S —mair, )l S UEellz 1o mte.ollz
=A< oo,

Thus, for A" < oo sufficiently large

. L n—1 ;
E([ ) EHJ)sua‘{rHHnEK, O {‘;,}_.-Jff.;.v}:l—l.-ztr—zl} e
£ m=6r+1

=z+1 =Bt

m=fHr+

n=1 :
< nA(t+1)4+n2K, Y {u}ﬁ—lfr + u;r—Z},n'El,r—z]]i
i m

Now

Aa—Gc=1

Z {‘ﬁi—lfr }_uir—Z]}Z[r-— ) = Zl {Iﬁ;]'"—l.-'r_l_va—l}-mr—ﬂ]
i

meEfr+

where now I;_ = [m/4], so that

" (r—2 2 T r—12)
Z {q‘-' :I."r+ﬂr Walr— h{_ 2;1 {‘.b[m.-'-d.]r"i'ui::nl.fd] r )

m=hi~1
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Similarly;
n=1
ﬁE+ 1 {RE'FZ—E_.-'J‘_I_H ;—Z}Rir 2:| z Ea[_m-'d:[ + ”Er "r]ﬂ;.r Ej}
m= bt

Given the size conditions on v, and ¢, ora,, it follows that one of these
sums is finite. It follows that there exists A, < oo sufficiently large that
forallz =z 0

(. £.a])<oemmn

Proof of lemma 6.7(z)

By the implication rule

F. E n- z Err ?’EJQE?{: Z fn ;ﬁfﬂ!].
L.z=1 t=r+1 =1 1=z 1
By Chebyshev's inequality
2 I s s L‘*qf’m:] L'(l: i :[ ) fen
B, t=r+1 =4
Y=t

From lemma 6.7(0), E([Zr_..,¢&.0%
that T < m. Hence

|

It follows that

}mi < (m-2)nd, given

L]
ek i Eie| = of ”‘] < An¥etn + 28, m?/en.
P

n
p=i .3 rf,,‘ = E:[ < Ambfetn 424, mP fen.

Proof af lemma 6.7(d)

By the triangle inequality and because |w, | < A
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where we assume A > 0 withouw: loss of generality. Frem lemma 6.7(c)
we have

P[FEI Has =i 1 é"

> B;’ﬁ] < ANA md -+ 2m)e*n,

Because m, = o(n'™*) we have m3/n — 0 and m2/n — 0. Hence

]

iYW Y &m0, o
r=1 r1=e+1
Proof of thesrem 6.8(a)

That B, is positive semidefinite ‘or all n = 1,2,... follows immediately
from lemmz 6.5 given assumption WT. Define

E: o (Wnd”_! i E[Sz:'g::]
=1

+n! Z Wie o EEI{S:LSEZI-;]'+EIIS:_.J‘§;H)—U§~
r=1

=t¥1

That Uy is positive semidefinite follows immediately {rom lemma 6.5
given assumption WT. Given assumptions DG, OP/, MX', DM", NE",
TL, and WT the conditions of kmma 6.6 are satisfied, and it follows
that

Be-B°—0 asn-— oo

The desired result follows by showing that
B,—(By+ U0,

Using the same notation as in the proof of theorem 6.3, we have that
vec[B, — (M + U9)]

ap

VEC S5

[~1=

= ’:{f}‘; & Gw,n"!

1

~(Gy @ GRW,on ™" i vec E(S‘A.Sﬁi)}
=]

my [
+[G:1 ® G":I Z “'n”_l Z vee EI'I'-I’E'IJ—'I
=1

=1+l
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—(GIRG) Y wun™' Y vecE(sst,.)

=1 t=e+1

Mp L
HG®G) Y wun™! ) vees, 3,
=1 t=1+1

—(GY®G) Y v ™" ¥ vecE(s) - 50
r | =t+l
The first term converges to zero by argument identical to that used in
the proof of theorem 6.3. The desired result follows provided that
G,— G250, which is valid under the conditions given as previously
argued, and if

=1
=

Wel [‘?E’G fnri':, p—y— VEC -E{S:!S::! —-r:l] _J‘_-" 0.

1

[~1a

]
-
=

T

Taking a mear value expansion of a typical element around 1 (interior
to © by assumation ID') gives

Mg n My n

Sk r Pt =1
Z Wmn Z Snrul':’rl.r—'rJ =Y E wnr” Z fniﬁﬁ.r—l.j
r=1 t=x+1 =1 (R TN |

+ 70, —07) aan as
where 7, is thel x k gradient

d n
— — ™ _— 1 - - = -
Hn = Ll H'lhrn Z} sml?l?in,r—t,j+5m_f?ﬂ5nﬁ-
t= T

Where 5., 5u s VoSus Valng are eveluated at a mean value lying between
, and 0, (As before, {, is replaced by a tail equivalent sequence, but the
notation is unchanged.) Hence

L]

21 Wit 36, E [‘1ﬂlf§ﬂ.l o Eisﬁ:ﬁ:. r—t.j}]
=

f=r+1

= ZI Weelt 1Y NS U (. |

+n~ 125 ()T, - 62).

Given assumptions DG, OP', MX', DM", NE”, TL, aud WT, lemma
6‘?Ed} Eppliﬂs with 'f.fl-:irr = J'li'l"";“‘.lﬂ1 f=enla E[:S:”.S‘;J = r.j] to Fie]t

Mg "
L ™ X [t Elshush =i, )1 20

t=e4 1
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The desired result follows il n'*’lﬁnJ{::Hﬁn-H:} is o,l). Now
\/{n]{ﬂn—ﬂﬁ is 0,(1) by assumpiion, so it suffices Lhatn‘”zpﬁn is 0,(1).
Consider a typical element of T,,say

Bp=3 Won~! 2 5ul0/00)5 1+ 5o JOI05

r=1 HL T

Now assumotion DM" ensures tiat for A, < co sufficiestly large

”mn- lﬁah”r = h‘rl; : El "f"ni_l E ||'-_|ulI”1r||{a|"'aHb|§n.l—r.j“lr

f=g+1

ot |!§:r,,! - :_j”lr ”{aﬂaaeh}EnHHZr

<mt ¥ At Y 2A2

e ] r=g+ i

<m;y ' Y 24
=]
=2A7%
which implies that m 'z, it 041} It follows that n~ Y7, =
n=2m(my'7,,) is 0,(1), given that m, is o(n'/*), as ensured by assump-
tion TL. The proof is now complete.

Proof of theorem 6.8(h)

The proofisidentical to that of part (a), except that , isreplaced by f,
0y is replaced by 6, and . /(n)(l,—82) is O,(1) under the conditions

given as a consequence of theoren 5.7. o
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