8 Summary and Conclusion

In the foregoing chapters we have presented a theory of estimation and
inference which applies to a variety of econometric estimators of the
parameters of possibly misspecified models of time-cependent hetero-
geneous processes, Although the results are fairly general with regard to
the scope of estimators and the allowed behavior of the stochastic
processes under study, they are nevertheless restrictive in a number of
different ways. Relaxing these restrictions is beyond the scope of this
work; such relaxations constitule a number ol interesiing directions for
further research.

Specifically, in assumption DG we focus atiention on discrete time
serigs. Treatment of continuously recorded proceses or processes
observed at irregular intervals is certainly a useful arza for subsequent
investigation. In assumption OF we restricl the nature of the extremum
estimators studied in a convenient way; however, we avoid an explicit
general treatmeni of mullistage estimators. The reason for this is
primarily ease ol notation. Nevertheless, certain important cases will
require explicit results for multistage estimators which do not fall into
the present context. Extension to these cases appears sraightforward in
most cases (see Andrews and Fair 1987). Results given here may
prove helpful in this effort.

Assumption OP also imposes the requirement that the parameter
space @ be a compacl subsel of a finite dimensional Euclidean space.
Compactness is a great convenience; however, analbogous results are
readily available for g-compact sets (e.g. Perlman 19°2; Hansen 1982).
Finite dimensionality is also unnecessary, at leas! for consistency
results. By allowing for infinite dimensional parametzr spaces, certain
nonparametric estimators (e.g. the method of sieves - see Geman and
Hwang 1982) can be brought into the present context(e.g. Wooldridge
and White 1985).

Assumption OP and later assumption SM impos continuity and
further smoothness (differentiability and Lipschitz) conditions on the
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[unctions ¢, Technigue: for replacing continuity with semicontinuity or
differentiability with diferentiability in mean square are well known
(c.g. Hoadley 1971; Roussas 1972). It should pose no more than a
modest technical challeage to relax the smoothness conditions imposed
here.

The mixing and near epoch dependence assumptions MX and NE
are those which distinguish the present work [rom other work in this
area. Together they allew for a degree of time dependence and hetero-
peneity ol the stochastiz processes studied not previously available in
the econometric literature. Even so, it should be possible to establish
laws of large numbers and central limit theorems under less restrictive
mixing and near epoch dependence conditions than those used here.
{Andrews 1987 accombdlishes this nicely for a weak law of large
numbers.) The techniques used here, and the underlying results for
extremum estimators which we provide, should assist in obtaining
similar results under conditions weaker than MX and NE.

One of the more restrictive aspects of the present results is the
imposition of domination conditions in assumption DM. This rules
out certain trending or explosive stochastic processes, thereby elim-
inating a very important class of linear and nonlinear data generating
processes from consideration. Elegant results of Crowder (1976) and
Weiss (1971;1973) for maximum likelihood estimation of correctly
specified models suggesttechnigues useful in extending our treatment of
extremum estimators of misspecified models to allow for unbounded
processes. Substantial progress in this direction has already been made
by Wooldridge (1986).

The identification coadition, assumption ID, is also stronger than
necessary. A weaker condition is given by Wooldridge and White (1983),
related to that ol Perlman (1972). Perlman gives conditions under
which such a condition is necessary and sufficient [or identification.

The remaining assumolions are conditions relevant to the problems
of covariance matrix estimation and/or the study of local power. OF
these, only assumption TL deserves special comment. Recall that
assumption TL requires that the truncation lag m, for estimating
the autocorrelation- and heteroskedasticity-consistent parameter co-
variance matrix tend to infinity but not too fast, as m, = o(n'®). It is
possible that this rate i slower than absolutely necessary, and that
some more clever methed of proof would yield a faster allowable rate.
We have left this investigation to other work.
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Whatever the limitations of our assumptions, our method of analysis
1s emplatically limited by its focus on asymptotic results. We make no
apologes for this, as an asympiotic analysis is clearly an ippropriate
first step in the investigation of any general estimation problem.
However, we must issue a clear warning: the asymptotic results may
provide little or no guidance as to what to expect in samples of the size
typically used by economists and econometricians. The asymptotic
results provide especially little guidance in the area of covariance
matrix estimation. Investipation of finite sample behavior of our
statistics and techniques for improving the asymptotic approximations
discussed here (by adjusting either the statistics or the approximating
distribution) should be of highest priority.

Despite our desire Lo give a comprehensive treatment, there are 4
number of issues which we have neglected almost entirely, primarily
because proper discussion of these issues within the current framework
would rzquire at least another book! The most important ofthese issues
are the ropics ol asymptotic efficiency in estimation and of specification
testing. General treatments of asymptotic efficiency can be faund in the
excellent books by Ibragimov and Has'minskii (1981) and Roussas
(1972). Recent articles in the econometrics literature more or less closely
related (o the present context are Hansen (1985) and Bates and White
(1987). The latter work makes use of results given here in obtaining
optimal instrumental variables estimators for systems o nonlinear
implicitsimultaneous systems of equations with generally nonspherical
errors, in a context allowing for general dependent hetrogencous
stochastic processes.

The specification testing issue is elegantly treated by Bierens (1982;
1984; 1687) in a context closely related to that considered here. White
(1987a; 1987b) provides an extensive discussion of this issue in a
context to which the present results are immediately relevent. Specifi-
cally, our results here can be used to construct a variety of interesting
new specification tests using the conditional moment approach of
Mewey 1985), having power against a variety of potentizlly serious
misspecfications. To mention just one possibility, the pre:ent results
support construction of analogues of information matrix ard dynamic
informaion matrix tests for models estimated by the zeneralized
method of moments (Hansen 1982).

OF necessity, this discussion only barely scratches the surface of what
we have neglected or left undone, and of the possibilities for future
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work. However, we offer our present results with the hope that they
may prove helpful in lurther developing the theory of estimation and
inference for nonlineardynamic models.
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Appendix

For ease of reference, this appendix collects togethier all of the labeled
assumptions given in the text, Assumptions are listed in the order in
which they are introduced. The assumptions and their various subparts
are nol in force beforethe indicated page.

Assumption DG (datageneration) (p. 7)

Let (£, F, P) be a complete probability space. The observed data are
generated as a realization

X = X{w) = Wi... ¥, (@), Vo), Vs y(w),...)

ofa stochastic process X,:Q — R™, w,e N = {1,2,. .. where V,:Q — R*,
ve M, and W x (% _ &' — RB™ are such that X, is measurable-F/B{[™),
=0, +1,+2 ... O

Assumption OP (optimand) (p. 11)
Let ® be a compact subset of RB* keN. For n= 1,2,... define the
optimand Q,:Qx® — R as
Qoles, 0) = g,y (e, ),
where (o, 8) = n~ ' 21 | g, 1), and

(i) g,:R'— B is continuous on compact subsets of B* uniformly in i;

(ii) q;:Qx©® — R'is such that g( -, f)) is measurable-F/B(R') for each 0
in @ and g,(w, -) is continuous on © almost surely, ie. for all w in
FieF,P(F)=1,t=1,2,.... n

Assumption MX (mixing) (p. 35)

{ W} is a mixing sequence such that either ¢, is of size —r/(2r — 2, r=2
ora, isolsize —r/r—2) withr = 2. O
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Assumption SM (smoothness) (p. 35)
(i} {g,} is almost surely Lipschitz-L, on @, |

Assumption DM (domination) (p. 35)

The elements of ¢,(0) are r-dominated on @ uniformly in ¢t = 1,2,...,
r=2 O

Assumption NE (near epoch dependence) (p. 36)

(i) The elements of {g,(0)} are near epoch dependent on {¥;} of size
—1/2 on (©, p), where p is any convenient norm on % i

Assumption 1D (identification) (p. 36)

When the functions J,=g,=\, exist, n=1,2,.., the sequence
{@.(0)} has identifiably unique minimizers [(*} on ® and identifiably
unique minimizers {#7} on {@,}. O

Assumption OP' (p. 73)
Let © be a compact subset of #. For n = 1,2,... dfine the optimand
0 lx® — Has
Qnlw, 0) = g, (e, 0),
where  (w, 8) = n~ ' Z_, q,(w, 0), and
(1) {g,:R'— R} is continuously differentiable of order 2 on compact
subsets of R uniformly in n;

(ii) g,:Q x @ — &' is a random function continuousy differentiable of
order2on®as,.tr=1,2,... . ]

Assumption DM’ (p. 76)

(i) The elements of {q(f)} are r-dominated on @ unilormly in
o= 411 LR R

(ii) The elements of {V,q,(#)} are r-dominated on @ unilormly in
A b e e |
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Assum ption MX' (p. 77}

{ ¥} 1s a mixing sequence such that either ¢, is of size —r/(r—1),r = 2
Or &, is of size —2r/(r—2), r = 2. ol

Assumption NE' (p. 77)

(i} The elements of {g,(0)} are near epoch dependent on {1} of size — 1
uniformly on (@, ).

(ii) The elements of {Vyq,(0)} are near epoch dependent on {¥;} of size
— 1 uniformly on(@, p). o

Assumption PD (positive definiteness) (p. 78)

(i) For {6} and {#¥} as defined in assumption ID, the sequences { B’}
and {B}} are unifcrmly positive definite. o

Assumption SM (p. T¥)
(i) {Vyq,(0)} is as. Lipschitz-L . 0

Assumption ID' {p. 79)

(i) The sequence (@)} has identifiably unique minimizers 16%} on @,
interior to @ uniformly in n. (|

Assumption SM (p. TY)
(iti) {Vig,(0)} is a.s. Lipschitz-L,. O

Assumption DM’ (p. 80}

(iii) The elements of {Vig,(f)} are r-dominated on @ uniformly in
t=1,2,..., r>2 i

Assumption NE (p. 80

(i) The elements of {Vyq,(0)} are near epoch dependent on {¥;} of size
—1/2on (@, p);
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(i) The elements of {Vig,({)} are near epoch dependent on - ¥} of size
—1/2en (O, p). o

AssumptionNE' (p. 80)
(i1} Assumption NE(iii) holds. O

Assumption PD (p. 81)

(i) {A¥} and {42} are uniformly positive definite. o

Assumption DM" (p. 93)

(1) The elements of {gq/(tl)} are 2r-dominated on @ uniormly in
t=12. . .r=32

(ii) The elements of {V,q,(®)} are 2r-dominated on ® uniormly in
t=ud. st

(iii) The elements of {V;q()} are 2r-dominated on © uniormly in
t=1,2....r=>2 0

AssumptionNE" (p. 94)

(i) The elements of {g,(f)} are near epoch dependent on {1} of size
—{r—1)(r—2) uniformly on (@, p).

(i) The elements of {V,q,(0)} are near epoch dependent on {%} of size
—(r—1)(r—2) uniformly on (@, p). O

Assumption [D’ (p. 94)

(1) The sequence {(,(0)} has identifiably unique minimizers {62} on
{©,), where {07} is interior to © uniformlyinn. o

Assumption NE"' (p. 101)

(1) The elements of {g,(#)} are near epoch dependent on {¥;} of size
—2(r—1)/{r— 2) uniformly on (@, p).

(ii) The elements of {V,q,(0)} are near epoch dependent on {1} of size
—2{r— 1)/{r — 2) uniformly on (@, p). o
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ﬁssump'lian TL (truncatin lag) (p. 101)

{m.} is a sequence of integers such that m,— o uas n— oo and
m.=on'). o

Assumption WT (weights) (p. 101)

For a given sequence {m,} define

i+ 1
Wi = L Byallyy — 5
A=t
where (a,,}, n=1,2,...,4=1,...,m,+1 is any triangular array such
that w,|<A<oo,n="_2...,t=1,...,m,and foreach 7, w,, — l as

H =k 0D, C1

Assumption HT (hypothesis testing) (p. 121)

Let (£, F, P) be a completz probability space and let @ = B®, ke, be a
compact set. Assume: :

(a) ©,:Q2x 0O — R is a rendom [unction continuously differentiable of
order2on @, a5, n=1,2,... .
(b) There exist sequences of functions {(,:@— R} and {4,:© - g5*¥)
such that (, is differentiable on @ and
O ()—0. (01— 0 as. uniformly on ©,
Va0, (0)—V,0,(0)— 0 as. uniformly on @,
V20, (0)—A(f)— 0 as. uniformly on ©,
where {0}, {V;0,], aad {4,} are continuous on @ uniformly in n.
(¢) {0,} has identifiably unique minimizers {#*} on @, interior to @
uniformly in n. Define
®, = {0e@:h(f)= h)

where h:® — R% q:=N, is continuously differentiable on ©,
It = h(B*), and {h7} ischosen so that

g —he) = ().

Assume that {@,} hasidentifiably unique minimizers {;} on {®,},
interior to ® uniformly in n.
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(d) /(n}0¥ —65) = o1),
(e) There exist sequences {B;} and {Bf} of O(1) vniformly positive
definite symmetric k x k matrices such that

VB2 (V00— V@t 2 N0, 1)
J (B ~12y,0% 4 N(O, I,).

(f) Thereexist sequences {B,:Q—R***} and { §,:Q— #***} measurable-
F/B(®*"*) and O(1) nenstochastic sequences {U!} and {U*} such
that

B,—(B;+ Ug) 50
B,—(B:+ UL,
(g) There exists a closed sphere § = © of finite nonzero radius such
that for some g = 0
UL {0e®:|f—0% <z} =8

and {A,(0)} is O(1) and uniformly positive definite uniformly on 8.
(h) There exist sequences {4,:Q— R***} and {4, Q - B***} mea-
surable-F/B(R***) such that
A —A2=>0 as
A,—A*—>0 as

where A5 = A (00), A? = A (6%). O

Assumption PD’ (p. 123)
Assumption PD(i) holds, and

(ii} There exists a closed sphere S = @ of finite nomzero radius such
that for some ¢ > 0

ne110e®:|0—0% <} =8

and {A,(0)} is O(1) and uniformly positive definite uniformly on
S, m}

Assumption CN (constraint) (p. 123)
Suppose h: @ — R9, ge /¥, is continuously differentiablz of order 2 on ®
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with Jacobian H( ) = Vii( - ) such that the eigenvalues of H(0)H(0) are
bounded below on 5 by 8 > 0 and above by A < a0,

For g = k, let h be one-to-one with a continuous inverse on S. For
q < k, suppose there exists r: @ — #*~7 continuous on ® such that the

mapping

(p' ') = (rl0).h(0))
has a conlinuous inverse

f ="(p,1)

defined over M = {(p,7):p = r(fl). T = h(B)), 0 € §}. Moreover, ¥(p, 7) has
a continuous extension to the set

RxT={p:p=r(0),0e@} x{r:x=h(6),0e@®}). D

Assumption DR (Pitman drift) (p. 124)

The sequence {h} is chosen such that

Jopt—m) =01). o
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