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Preface

Statistics is a subject with a vast field of application, involving problems which
vary widely in their character and complexity. However, in tackling these, we
use a relatively small core of central ideas and methods. In this book I have
attempted to concentrate attention on these ideas, to place them in a general
setting and to illustrate them by relatively simple examples, avoiding wherever
possible the extraneous difficulties of complicated mathematical manipulation.

In order to compress the central body of ideas into a small volume, it is
necessary to assume a fair degree of mathematical sophistication on the part
of the reader, and the book is intended for students of mathematics who are
already-accustomed to thinking in rather general terms about spaces, functions
and so on. Primarily I had in mind final-year and postgraduate mathematics
students.

Certain specific mathematical knowledge is assumed in addition to this
general sophistication, in particular: a thorough grounding in probability
theory and in the methods of probability calculus; a nodding acquaintance
with measure theory; considerable knowledge of linear algebra, in terms of
both matrices and linear transformations in finite-dimensional vector spaces;
and a good working knowledge of calculus of several variables. Probability
theory is absolutely essential throughout the book. However only parts of it
require the other specific bits of knowledge referred to, and most of the ideas
can be grasped without them. .

There is a continuing controversy among statisticians about the foundations
of statistical inference, between protagonists of the so-called frequentist and
Bayesian schools of thought. While a single all-embracing theory has obvious
attractions (and Bayesian theory is closer to this than frequentist theory), it
remains true that ideas from both sides are useful in thinking about practical
problems. So in this book I have adopted the attitude that I should include
those ideas and methods which I have actually used in practice. At the same
time, I have tried to present them in a way which encourages the reader to
think critically about them and to form his own view of their relative strengths
and weaknesses.

It is not my view that all that is required to make a statistician is an under-
standing of the ideas presented in this book. A necessary preliminary to their
use in practice is the setting up of an appropriate probabilistic model for the
situation under investigation, and this calls for considerable experience and
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judgement. I have made no attempt to discuss this aspect of the subject and the
book contains no real data whatsoever. Moreover, the examples, some of
which are not easy, are intended to provide the reader with an opportunity for
testing his understanding of the ideas, and not to develop experience, in
establishing mathematical models. I consider it easier to grasp the basic ideas
when one is not harassed by the necessity to exercise judgement regarding the
model, '

It is impossible for me to acknowledge individually my indebtedness to all
those who have influenced my thinking about statistics, including present and
past colleagues, but I must express my gratitude to three in particular: to
Dr R. A. Robb who first introduced me to the subject and who supported me
strongly yet unobtrusively during my early fumbling steps in applied statistics;
to Professor D. V. Lindley whose lectures in Cambridge were most inspiring
and whose strong advocacy of the Bayesian approach has forced many besides
myself to think seriously about the foundations of the subject ; and to Professor
E. L. Lehmann whose book on testing statistical hypotheses clarified for me
so many of the ideas of the frequentist school. I also wish to thank an anonym-
ous referee for several suggestions which resulted in an improvement to an
original version of the book.

Most of the examples for the reader are drawn from examination papers,
and I am obliged in particular to the University of Cambridge for permission
to reproduce a number of questions from papers for the Diploma in Mathe-
matical Statistics. These are indicated by (Camb. Dip.). Since the original
sources of questions are difficult to trace, I apologize to any colleague who
recognizes an unacknowledged question of his own.

Finally I am extremely grateful to Miss Mary Nisbet who typed the manu-
script with admirable accuracy and who sustained extraordinary good humour
in the face of numerous alterations.
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Introduction

Preliminaries

The theory of probability and statistics is concerned with situations in which
an observation is made and which contain an element of inherent variability
outwith the observer’s control. He knows that if he repeated the observation
under conditions which were identical in so far as he could control them, the
second observation would not necessarily agree exactly with the first. Thus
when a scientist repeats an experiment in a laboratory, no matter how careful
he may be in ensuring that experimental conditions do not vary from one
repetition to the next, there will be variation in the observations resulting from
the different repetitions, variation which in this context is often referred to as
experimental error. Similarly, two apparently identical animals will not react
in exactly the same way to some given treatment. Indeed it is the case that
almost all situations in which observations are taken contain this element of
variability. So the field of application of the theory which will be introduced
in this book is extremely wide.

The possibility of formulating a mathematical theory to assist in the inter-
pretation of observations in this kind of situation arises from the following
phenomenon. Suppose we consider an experiment which can be repeated and
whose result is ‘an observation’. This observation may belong to some stated
set E of possible observations or it may not. If the observation belongs to E
we shall say that ‘the event E has occurred’. Now suppose that the experiment
is repeated n times and on each occasion we note whether or not E occurs. It
transpires in practice that the proportion of times that a stated event E occurs
in n independent repetitions of the experiment seems to settle down, as n
increases, to a fixed number, depending of course on E. This is the phenomenon
which is popularly referred to as the ‘law of averages’ and it is this law which
underlies the whole theory of probability. It leads to the description of the
inherent variability in the kind of situation we are discussing by a probability
distribution or measure over the set of possible observations.

It will be assumed that the reader is familiar with the notion ofa probability
distribution and the way in which the ‘law of averages’ motivates its underlying
axioms. (For a full account of this he may consult such books as those by
Lindgren, 1962, Lindley, 1965, Feller, 1968, Meyer, 1965.) However since there
are slight differences in usage we shall now explain the interpretation to be
given to certain terms which will occur repeatedly.

Preliminaries




112 Sample spaces sample space. The mass assigned thus to the subset E is the probabitity of
the event E, !

If the sample space X is discrete, that is, finite or countably infinite, a i
probability distribution on it is defined by stting the mass associated with ‘ f
each of its elements: then the probability of an event E is simply the sum of \u
the masses associated with the elements of E, If X is not discrete and has some il
‘natural” measure such as length or ared defined on it, then usually a prob-
ability distribution is defined by a probability density function relative to this .
‘natural’ measure: then the probability of the event E is calculated by inte- !
grating this density function over E.

Thus if X is the real line, a probability density function is a non-negative
function p(x) of the real variable x, such that

Possible observations in a situation under investigation will be represented in
amathematical set or space called a sample space. 1t is not necessary that there
be a one-to-one correspondence between elements of a sample space and
possible observations. Indeed, in a sophisticated treatment an observation is
represented by a set of points for reasons which we need not elaborate at this
stage. It will be sufficient for our purposes, at least initially, to regard a sample
space as a set in which each possible observation is represented by a distinct
element or point. It would be unnecessarily restrictive and would lead to
clumsiness to insist that every point in a sample space should represent a
possible observation and so we shall allow the possibility that a sample space
is bigger than is absolutely essential for the representation we have in mind.

We shall denote this space by X, its typical point by x, and we shall refer to T () dx = 1 i
‘the observation x’. Of course X will vary according to the situation being R p(x)dx = 1. g
investigated. It may be that each possible observation is a real number, in e ;:

which case X may be taken as the set of real numbers, It happens frequently
that each possible observation is an ordered set of n real numbers, in which
case x = (xy, X5, ..., x,) and X may be taken as real n-space. It may even
be that X is a space of functions, as, for example, when an observation is the
curve traced by a barograph over a specified period of time.

The probability of the interval (a, b) is then i
\ :
[reax | I

N and these are ordinary Lebesgue (or Riemann) integrals. If X is the plane, a
probability density function is a non-negative function p(x;, x,) of the pair

I 1.1.3  Events of real variables x, and x,, such that
’ A subset E of a sample space X represents a real-life event, namely the event * %

' that the observation made belongs to the set of observations represented by f f P(x1, Xp) dxydx; = 1.

] -0 T

| E. Of course in everyday language a given event may not be described in this

somewhat pedantic manner, but such a description of it is always possible. The pfob’ability, for instance, of the circle C = {Geg, x2) 33+ x2 < 1} is

; (To take an almost trivial example, if we consider rolling a die and observing then

i the number on the face appearing uppermost, the event ‘an even face turns up’

I{ is the event ‘the observation made belongs to the set {2, 4, 6} of possible f f p(xy, x3) dxy dx,,
3 [

i observations’). Even if an event is described in everyday language it simplifies
i matters to think of it as simply a subset of a sample space, and because this
; habit of thought is so useful we shall often identify an event with the subset
! representing it and refer simply to ‘the event E’.

‘ We shall assume that the reader is familiar with the interpretation of the
standard set operations in terms of events, for example, E; U E, is the event
‘either E, or E,".

and again these are ordinary Lebesgue double integrals.

In the sequel we shall usually be concerned with probability distributions
which are defined in one or other of these ways. In both cases we shall write
the probability P(E) of the event E in the form

P(E) = L p(x) dx.

1.1.4  Probability distributions In the discrete case this is to be interpreted as

As we have already said, the inherent variability in the kind of situation which 2. plxy),

concerns us is described by a probability distribution on the set of possible HeR

observations, or on a sample space. A useful, if somewhat naive, way of think- where p(x;) is the mass associated with ;. In the non-discrete case dx is
ing about a probability distribution is to imagine a unit mass spread over the interpreted as the element of the ‘natural’ measure on X with respect to which

14 Introduction 15 Preliminaries
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p(x) is a density function, be it length, area etc., and the integral is interpreted

accordingly. In both cases we shall refer to p(x) as a (probability) density
function.

Random variables

The phrase ‘x is a (real) random variable with probability density function
p(x)’ is used with various shades of meaning by different authors. So far as we
are concerned this phrase will be regarded simply as an alternative way of
saying ‘a sample space X for the situation of interest is the real line and the
inherent variability of this situation is described by the probability distribution
on X with density function p(x).’

The reason for introducing this terminology is that it simplifies the descrip-
tion of more complex situations. Thus a very common statistical situation is
the following. An experiment whose possible results are real numbers, is
repeated n times, the replicates being independent of one another. Our typical
observation x, then, is of the form (x,, x,, . . . , x,) and the appropriate sample
space is real n-space R”. Moreover if the variability in the results of a single
replicate is described by the probability distribution (on the line) with density
function p, then that in the results of n independent replicates is described by
the distribution {on n-space) with density function

f(xlaxla core ,X,,) = ﬁ p(xi)~

This can all be conveyed simply by saying that x,, x,, ..
random variables each with density function p.

An alternative way of describing the situation just enunciated is to say that
X1, X3, . . ., X, constitute a random sample from the distribution with density
function p, and this phrase too, we shall sometimes use without going into the
historical reasons for its use. Statistical literature still contains much quaint
terminology like this.

., X, are independent

The general inference problem

To define a probability distribution on a sample space it is not necessary to
define the probability of every event, The distribution is completely defined
by defining the probabilities of a sufficiently wide class of events, and then the
rules or axioms of a probability distribution may be used to deduce the
probabilities of events outside this class. It is with such deductions that
probability calculus is concerned, with answering such questions as ‘Given
sufficient information to define a probability distribution completely, what is
the probability of such-and-such an event?’

Statistical inference is concerned with a completely different kind of problem
which arises for the following reasons. Suppose we consider an observational

Introduction
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situation containing inherent variability. This is described by a probability
distribution on a suitable sample space. However, in any specific case we shall
not know what the appropriate probability distribution is. There will be a
whole class of possible distributions one of which is appropriate for this case.
Which one is unknown to us.

Trials

To take a specific example, suppose we consider a new model of automobile
which is being produced in large numbers. We choose one at random from the
production line and observe whether or not it suffers a mechanical breakdown
within two years. This is the simplest kind of probabilistic situation, where
there are only two possible observations. (Such a situation is often referreq to
as ‘a trial’.) A suitable sample space consists of two elements 1 (repre§enF1‘ng
breakdown) and O (representing no breakdown), and the inherent varxabxht.y
in the situation is described by a probability distribution which in this case is
defined by a single number 6, the probability of breakdown. While we can say
that the variability is described in this way, for some value of 6 between 0
and 1, we do not know what this value is. In other words, there is a family
{P,:0 < 6 < 1} of possible distributions on the sample space and we do not
know which one is appropriate.

Example

A more complicated illustration is the following. Suppose we have a laFge
batch of seeds stored under constant conditions of temperature and humidity.
In the course of time seeds die. Suppose that at time ¢t a proportion 7 (t) of the
stored seeds are still alive. At each of times ¢y, 1,, . . ., £, we take a random
sample of n seeds and observe how many are still alive. So a typical observation
consists of an ordered set (r,, r5, . . . , r,) of integers, r; being the number of
seeds observed to be alive at time ¢, If we know the function =(t) then it is
a standard result of probability calculus that the appropriate distribution t:or
describing the variable element in this situation is that defined by the density

5

p(rb Foyenns rs) = l—-[ (:) [n(ti)}"[l "7!(!;)]'””.
= I
Of course in practice m(f) is unknown and so we have a class of possit?le
distributions, one corresponding to each function n(t). Now z{t) is necessarily
a non-increasing function of ¢, taking values between 0 and 1. If we denote the
class of such functions by 2 and, as is customary, write 8 instead of = (z) to
label distributions, again in this situation there is a family {PO:Q € @} of
possible distributions on the sample space and we do not know which is the
appropriate, or true one.

17 The General Inference Problem
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- characteristic in question. Thus in example 1.2.2 we may be interested in the

What has been illustrated in these two particular examples holds for a general
observational situation containing inherent variability. There is a family
{P4:0 € ©} of possible distributions describing this, and we do not know
which is the true member of this family. The label 8 is called a parameter. The
set © to which the labelling parameter § belongs varies from one situation to ,
the next. In the first example above, ® is a set of real numbers; in the second,
it is a set of functions; in another example it might, for instance, be a set of
vectors,

The general inference problem arises from the fact that we do not know
which of a family of distributions is the true one for describing the variability
of a situation in which we make an observation. From the observation made
we wish to infer something about the true distribution, or equivalently about
the true parameter. The general possibility of making inference rests in the
fact that it is usually the case that a given observation is much more probable
under some members of the family {P,} than it is under others, so that when
this observation actually occurs in practice, it becomes plausible that the true
distribution belongs to the former set rather than the latter. In this sense an

observation gives information about the true distribution. We shall be con- S

cerned with clarifying this somewhat vague notion for particular types of
problem and discussing the nature of the answers we can give.

Estimation

The first type of problem that we shall investigate is that of estimation.

The problem of point estimation arises when we are interested in some
numerical characteristic of an unknown distribution (such as the mean or
variance in the case of a distribution on the line) and we wish to calculate, from
an observation, a number which, we infer, isan approximation to the numerical

time t* such that n(t*) = %, and wish to use the observation (ry, r,,...,r)
to calculate an approximation to, or estimate of, the unknown quantity r*,
There is little value in calculating an approximation to an unknown quantity
without having some idea of how ‘good’ the approximation is and how it
compares with other approximations, It is not immediately clear what we
medn by ‘good’ in a probabilistic context where we have to infer that the
calculated value approximates to the unknown quantity of interest. So we
shall have to discuss what is meant by ‘good’ in this context.

As we have said, after an observation has been made, it becomes plausible
that the true distribution belongs to a sinaller family than was originally
postulated as possible, or equivalently that the true value of the indexing -
parameter 6 belongs to a proper subset of ®. The problem of set estimation is

concerned with determining such a plausible subset, and in clarifying the sense
in which it is plausible.

Introduction
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Hypothesis testing -

An observer sometimes has a theory which when tra‘msla}ted into §t§tlst1;:;1
language becomes a statement that the true distribution descrlbmfg .16
inherent variability of his observational situation belongs: to a smaller ?mxly
than the postulated family {Py:0¢€ @} of possible distributions, or egulva emly
that the true value of the parameter 6 belongs to a subset of ©. 'ljhus in examplg
1.2.2, a botanist might have a theory explaining why seegs die which wou :
imply a particular form for the survival function ngt). In this case, he may w1.sh
to use an observation to infer whether or not his theory is true. It is wit
inferences of this nature that the theory of hypothesfs testing is concerned, and
this is the second of the main topics that we will discuss.

Decision theory

Many applications of statistics are based on the theories of estimanonland
hypothesis testing mentioned in sections 1.3 and 1.4. However, as we shall see,
these theories have certain unsatisfactory feature_s, and a deeper underst'ax:xd-
ing of the nature of the problems involve.d is oPtaxned by the study of decision
theory, which is the last of our three main topics.

Revision examples on distribution calculus

Let x4, X3, . . ., X, be independent N (, ¢*) random variables and let

1 =\2
-x-=1(X1+xZ+ ...+x,,), SZ = n_lz(xi—k) .
n
Prove that
(a) X is N (u, a°/n); . .
(b) (n—1)s?/c? is distributed as y* with n— 1 degrees of freedom;

(c) \/n(X— w)/s is distributed as Student’s £ with n—1 degrees of freedom.

Let wand v be independently distributed as y? wit.h m and n degrees of freedom
respectively. Show that nu/mv has an F-distribution.

Let x4, X5, ..., X, be independent Poisson random variables with common
mean A. Find the conditional distribution of x,, given x; +x,+ ... +X,.

Let x4, X3,. . ., X, be a random sample from the exponential distribution with

density e”“(u > 0). Find the distribution of ) x;, and the conditional

i=1

n
distribution of x,, given 'Zx X;.
=
If x is a random n-vector which is normally distributed with_ zero mean and
variance matrix £, show that x’Z~'x is distributed as x? w1t1_11n degrees of
freedom. If E(x) = u # 0, what then is the distribution of XX~ ! x?

Decision Theory
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. . . » x2
variance matrix Z are similarly partitioned into [y, ] and [Z,, X,
Ha Zis 2"2'2]

respe.ctively. If x is normally distributed, find the conditional distribution of
Xy, given x,.

Let x be a random n-vector whose components are independent normal
random variables each with zero mean and unit variance; and let P be a
sym‘metric idempotent matrix of rank » < . Prove that x'Px and x'(1—P)x
are independent and that each is distributed as 2. (Here I is the unit matrix
of order n.)

More generally, if Py, P,, .
that P, +P,+ ... +P, = I, show that xP,x, x'P, x, .

.., Xx'P,x are inde-
pendent and that each is distributed as %2, ‘

Introduction
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Minimum-Variance Unbiased
Estimation

The point estimation problem

Before formulating the point estimation problem in a general mathematical
way, we shall consider some particular examples ofit.

If a situation is such that only two outcomes, often called success and failure,
are possible, it is usually called a trial. The variable element in a trial is des-
cribed by a probability distribution on a sample space of two elements, 0
representing failure and 1 success; this distribution assigning the probability
1—-6to0andftol, Where 0 < 6 < 1. Suppose we consider n independent
repetitions of a given trial. The variable element in these is described by a
probability distribution on a sample space of 2" points, the typical point being
x = (Xy, X2, - - - » Xy)» Where each x; is 0 or 1, and x; represents the result of
the ith trial. The appropriate probability distribution is defined by

Do (x) - em(x) (1 — e)n—m(x),

. ‘
where m(x) = Y x; is the number of 1s in the results of the n trials, this being
i=1
so since the trials are independent.
Given an x in this situation it seems reasonable to estimate 6 by m(x)/n, the
proportion of successes obtained. This seems in some sense to be a ‘good’
estimate of 8. We shall inquire in the course of this chapter in precisely what

sense it is good.

A plausible probabilistic model of the way in which particles are emitted from
a radioactive source yields the result that the number of particles emitted in a
unit interval of time, may be regarded as a random variable with a Poisson
distribution, that is,

et

Pr ( particles are emitted in unit interval) = —
ri

(See, for instance, Lindley, 1965, vol. 1, section 2.3.)

For a given source, 4 will in general be unknown and a scientist might be
interested in the question, ‘What is the emission rate A of this source? To
answer this question he would observe the number N, say, of particles emitted
by the source over some longish period of time T and call N/T the emission

The Point Estimation Problem
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rate of the source. .It is not difficult to see that this is an estimation problem, 4 3
that the question is one of estimating 4, and that N/T is in some sensc 2 &

reasonable estimate,

.The.variability of the point of impact of a bullet fired at an infinite target may, ]
1q v1.rtue. of the central limit theorem, be described by a ‘bivariate normal
distribution’; that is, by a pair (x,, x,) of random variables with density I

function
1
plxy, x;) = ZthEFeXP {~3(x-6yz-! (x—6)},

where x’ is the vector (x1, x3), 6 a vector (6, 62), and X a positive definite
two-by-two matrix. Here x, and X, are interpreted as the abscissa and ordinate

of the point of impact relative to horizontal and vertical axes meeting at the
centre of the target,

For a given marksman using a new rifle, the vector 6 and the matrix X will -

be unl.cnown. The marksman may fire several shots independently at the
target in qrder to determine the ‘centre of impact’. Since for the above bivariate
nopnal distribution 8, is the mean of Xy, and 6, that of x,, the marksman'’s
object may be interpreted as the estimation of 6, and 4,.

Suppose that a stimulus can be applied to subjects at various levels, For
example, the stimulus might be a drug, the subject an animal, and the level a
dose of the drug. In general the probability of a response to the stimulus
depends on the level s at which it is applied, and often it may be assumed that
the proba}bility 6(s) of response to level s is a non-decreasing function of s,
An ex’perlmenter may well be interested in a certain aspect of this ‘response
curve’, for example in the 99 per cent response level, that is, in the value s* such
th_at 0(s*) = 099, Given the responses of subjects to different levels of the
stimulus, he is then facing a problem of estimating a real valued function s*
of the unknown parameter @ (which in this case happens to be a function),

‘Good’ estimates

In each of the examples in section 2.1 the problem is one of using observations
to ﬁnd' a n}lmber (or numbers) which, we infer, is an approximation (are
approx1m.at1(:>ns) to a numerical characteristic (or characteristics) of an un-
known distribution, As always, one wishes such approximations to be ‘as
good as possible’, and in order to clarify what we mean by this phrase in an
u.1fert.°.nce context we shall now formulate the problem mathematically, con-
81d'er1.ng first on the case where we are interested in a single numerical cI;arac-
teristic,

The basic ingredients in a mathematical description of this problem are a
sample space X, a family {P,:0 e ©} of probability distributions on X,and a
real-valued function g on O (a real parameter &). There is a ‘true’ (t,hough

Minimum-Variance Unbiased Estimation
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unknown) value g(6) of this function corresponding to the true but unknown
6, and this is what we wish to estimate. To do so we must state a rule which ™
tells us, for each x in X, what we should use as an approximation to g(6): in
other words we must define a real-valued function ¢ on X. Such a function g
is called an estimator of g(6) and a particular value of it, g(x), is called an
estimate. While it is useful to be aware of this distinction between estimate and
estimator, it becomes somewhat pedantic to maintain it when it is clear from
the context that we wish to regard g(x) as a function — as when we write
E{g(x)}. So we shall not maintain the distinction consistently in the sequel.
What we now have to do is to say what we mean by a ‘good’ estimator.

Relative to any particular member of the family {P,} of distributions on X
we can make probability statements about g. (There is a technical point here.
We must assume that the function ¢ is measurable, and we shall invariably
make this assumption in the sequel. This need not concern the reader who is
unfamiliar with measure theory. However for an explanation of measurability
and other relevant notions of measure theory, he is referred to Doob, 1953,
supplement.)

Thus Py{|g—g@®)] > ¢} = Po{x:|8(x)~g )] > ¢}

is a well defined mathematical expression whose practical interpretation is as
follows. It is the probability that ¢ differs from the ‘true’ value g(6) of the
numerical characteristic of interest by more than c. (When we speak of the
‘true’ distribution P, we simply mean that any probability statements made
refer to the distribution P, on the sample space.)

Now ideally we should like to have
Py{g =g} =1 foreveryb,

since the practical interpretation of this statement is, ‘With probability 1 our
approximation or estimator § equals the true parameter g(6) whatever this
may be.’ There is a case where this can be achieved. Suppose that the sample
space X can be partitioned into a family {X,:60 € ®} of (disjoint) subsets and
that the distribution P, assigns probability 1 to X, for every 8. Then if

g(x) = g(0) for xe X,and every 8 e ©,

the estimator § of g(f) contains essentially no error. Of course from the
practical point of view this is a situation which virtually never occurs, though,
particularly when the observation x constitutes a large random sample from
a distribution, it may be approached quite closely.

A less formal way of describing this ideal situation is to say that in it, any
observation x is possible under only one member of the family {P,} of dis-
tributions, so that when we observe an x we know which is the true distribution,
and hence what is the true value of the real parameter of interest. Usually every
observation x is possible under every distribution. Then we cannot estimate
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without some possibility of error. So we are led to the more realistic con-

sideration that a good estimator is one which in some average sense is as good ¥

anapproximation to the parameter of interest as possible. One obvious demand

of this kind to make is that an estimator should have minimum mean-square ]

error, that is, that a good estimator g should be such that
Ey{-20)) < Ep{g~2(0)}2

for every 6 and every other estimator g

Unfortunately, as a little thought shows, this is not a realistic demand either,
For any given 6, 6, say, we can always find an estimator whose mean-square
error is zero for this particular 6 (the estimator defined by g(x) = g(8,) forall
x). Thus to have, uniformly in 6, minimum mean-square error, an estimator g

must have zero mean-square error for every 8. That is, it must be possible to N

estin?ate g(9) without essential error, and as we have seen this is usually im-
possible. So we must modify our demands further.

Unbiasedness

An estimator which takes the same value for all x is clearly ridiculous from the
practical point of view, If we use such an estimator we might as well take no
observation at all and merely state a priori that our estimate of £(6) is so and
so. Now it may be that if we start by throwing out such absurd estimators,
there. may exist one which has minimum mean-square error among the
remainder. One way of eliminating these trivial estimators is to demand that
an estimator be unbiased, that is, that its expected value should equal the true
parameter value, whatever this may be, so that

Eg{g} = g(0) forall 0.

Itis to be noted that this demand is more artificial than any we have previously
cgnsidered and that while it does eliminate trivial estimators, it may also
Fhminate quite respectable estimators. For instance, suppose that x,, X, ..., x
is a random sample from a normal distribution with unknown mean U anél
unknown variance o2. (The indexing parameter 8 of this family is 6 = (i, ¢2).)
‘Natural’ estimates of the real parameters y and o are the sample mean X and
the sample variance »

n

1
s = - Z (ot~ %)%,

n ¢

i=1

of tt;ese the first is unbiased, Eo(X) = u, for all 8, but the second is biased since
E (s%) = (n.— 1)n~ g2, for all §, Despite this, however, a great deal of attention
has. bc?cn paid to unbiased estimates and we shall now consider the question,
Within the class of unbiased estimates does there exist one of minimum mean-
square error?” Of course, for an unbiased estimator, mean-square error,
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E,{g—g(®}?, is the same thing as variance, var,§, so that we may talk about
a minimum-variance unbiased estimator, or an M.V.U.E.

Sufficiency

The idea of sufficiency is an important notion in statistical theory generally as
well as in minimum-variance unbiased estimation in particular, so that while
we discuss it in the latter context it must be borne in mind that it has more
general impact.

Intuitively it is fairly clear that sometimes certain aspects of a set x of
observations provide no information at all about an unknown parameter 0
of interest, and that in making inferences about 8, we lose nothing by neglecting
such aspects. For example, if x denotes the results of n independent trials in
each of which the probability of success is 6, so that x = (x, X, ..., X,),
where each x; is either 1 (for success) or 0 (for failure), then it is plausible that
only the sum Y. x; (the number of successes) provides information about 8
and that, for instance, the order in which the Os and 1s occur is totally irrelevant
and may be ignored in estimating 6. (It is important to bear in mind that these
other aspects of the observation x may provide information about the validity
of the model adopted, that is, in this case about whether the trials are indeed
independent and identical. If we are not sure of this assumption, we may well
use these other aspects to test its validity. However this is not our concern in
the meantime.)

How can we give this notion general mathematical expression? This can be
done in terms of partitions of the sample space.

Suppose that we have a partition & of the sample space, that is, a covering
of the sample space by a family & of disjoint subsets, and we consider the
conditional probability distribution Py, corresponding to a parameter 6,
over a set A of this partition. Suppose further that for no A € o/ does Py,
depend on 6. Now imagine that we are given the set A of the partition &/ to
which a point x in the same space belongs. This piece of information may give
us some information about 8, but further information about which point of
A x happens to be, gives information only about the conditional distribution
Py s, and since this does not depend on 6, this further information tells us
nothing more about 6.

Consider, for instance, the case of n independent trials. The typical point of
the sample space is x = (x;, X3, . . ., X,,), Where each x; is either 0 or 1, and
there are 2" points in the sample space.

Let & be the partition {Aq, A,,. .., A,}, where x € A, if and only if

n
Yoxi ="

There are <'rl> points in A,. If 8 is the probability of success for each trial, then
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-1
Pante) = ()

for every x € A, and every @ between 0 and 1. So the conditional distribution
Py 4, is independent of 8 for every A,, and this is a formal mathematical
expression of the fact that, given the total number of successes, additional
information concerning the order of occurrence of successes and failures
tells us no more about 6.

We are then led to the following general definition.

Definition

A partition of of the sample space is said to be sufficient for 8 (more precisely,
Jor the family {Py:0 € ©}) if for no A € o does Py, depend on 6.

It is immediately obvious that the partition whose elements are individual
points of the same space is sufficient for an unknown parameter and that this
partition is ‘finer’ than any other sufficient partition, but it often happens that
there is a ‘coarser’ partition than this which is also sufficient. It may be that
there exists a sufficient partition o/ which is at least as coarse as any other
sufficient partition 4 in the sense that every set of & is contained in a set of
. Such a partition & s said to be minimal sufficient.

The question of the existence, in general, of a minimal-sufficient partition
involves measure-theoretic difficulties. (For a discussion of this, see Lehmann
and Scheffe, 1950.) These difficulties.disappear when the sample space is either
discrete or a finite-dimensional Euclidean space, and the family {Pg} of
distributions is defined by a family {p,} of density functions with respect to the

‘natural’ measure on the appropriate space. Then it is possible to construct a
minimal-sufficient partition as follows.

Two points x and x’ in the sample space are said to be equivalent and we
write x ~ x"if the ratio py(x)/p,(x’) of densities does not depend on @, This is
an equivalence relation and so it defines a partition of the sample space. This
partitition is minimal sufficient.

Consider, for instance, the case of n independent trials when

X = (X3, X, ..., %) and  pe(x) = 655(1 — Q)" Tx,
Then Ps(x) = §Fxi—Ixi (1— 9)—2x‘+2x§_
Pe(x)

This ratio does not depend on 8 iff )" x; = Y xi. So x ~ x' iff Y. x, = ¥ .
Hence the partition of = {Ao, Ay,...,A,}, where xe A, iff Y’ x; = r, intro-
duced above, is not only sufficient ; it is minimal sufficient.

While partitions are useful as an aid to understanding the notion of suffi-
ciency, this idea is usually expressed in terms of statistics. A statistic is simply
a function (not necessarily real valued) on the sample space. To any such
function ¢ corresponds a partition of the sample space, the typical set A of this
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partition being defined as t~!(a), for a fixed a in the range of ¢. Conversely,
given a partition of the sample space we can clearly define a function for which
the corresponding partition is the given one, though of course this function is
not, in general, unique.

Sufficient statistic

A statistic ¢ is said to be sufficient for a parameter 6 (more precisely, for the
family {P,:0 € ®}) if the partition of the sample space generated by ¢ is
sufficient or, in other words, if the conditional distribution Py, on the sample
space, for given t, does not depend on 6. Similarly ¢ is said to be minimal
sufficient if its corresponding partition is minimal sufficient, so that a minimal-
sufficient statistic is a function of every other sufficient statistic. A minimal-
sufficient statistic corresponds to the greatest reduction of a set of data
(comprising an observation) that can be achieved without discarding any
information relevant to inferences about the unknown distribution. It is worth
noting that a minimal-sufficient statistic, if it exists, is not unique since any
one-to-one function of a minimal-sufficient statistic is also minimal sufficient.
(They generate the same partition of the sample space.)

How in practice do we recognize a sufficient statistic? In the case where the
family {P,} of distributions on the sample space is defined by a family {p,} of
density functions with respect to some fixed measure, a most useful result in
this context is the following.

The factorization theorem

A necessary and sufficient condition for a statistic t to be sufficient for a family
{P,:0 € @} of distributions is that p,(x) can be expressed in the form

Po(x) = go{t(x)} h(x),

where g, and h are appropriately measurable functions of the indicated variables
and h does not depend on 0.

A complete proof of this result involves measure- theoretlc considerations
which are beyond the scope-of this book. The interested reader may refer to
Lehmann (1959), p. 47. In the case where the sample space is discrete these
difficulties disappear and we now give a proof for this case. In this case py(x) is
the probability assigned to the point x by the distribution P,.

(i) Let t(x) = a and suppose that the factorization criterion is satisfied so
that py(x) = gy(a) h(x).

Then Pyt=a)= § p()=g@ 3 )
x'et = 1(a x'et~ Ya
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P _ k()
Py(t = a) > hixy

x'et = (a)

Hence Py(x|t = a) =

and this does not depend on 6.
(i) Conversely, if ¢ is sufficient,

Po(x) = Py(t = a)P(x|t = a),

where the second factor does not depend on 6 because of sufficiency. Writing
Py(t = a) = gy(a)and P(xlt = a) = h(x) gives the result. : :

In the case of n independent trials with probability 8 of sﬁccess we have
Po() = 65%¢(1~ 62,

Trivially this factorizes into a function of 8 and 1, where 1(x) = Z x; and a |
function of x only — the function h(x) = 1.

Letx = (x4, X3,..., x,) be a random sample of n from a N (y, o) distribution
with § = (u, o) unknown.

1 1
Then  po(x) = s exp [ =) (xi~u)2]

1 1 1

Again trivially, py(x) factorizes into a function of t, where tx) = (%3 (x;~%)?)
a vector-valued function, and 8 and a function of x only (again the constant
function 1). So ¢ is sufficient for 8. :

This example illustrates that if our observation is a random sample of n
from a normal distribution, we lose no information relevant to inferences by
quoting merely the sample mean and the sample variance. Note, however,
that this is not usually true if the family of possible distributions is other than
normal,

The Rao-Blackwell theorem

The relevance of sufficiency to the question of minimum variance unbiased
estimators is brought out by the following theorem.

Let {Py:0 € ®} be a family of distributions on a sample space X and suppose
that § is an unbiased estimator of a real-valued Sunction g of 0. Then if tisa
sufficient statistic for 0, Eo{g|t} is also an unbiased estimator of 8 and it has
variance uniformly no larger than that of g

Proof. We have to prove three things:

(i) that Ee{g]r} isa function g(z), say, of t only and does not depend on 4;
(ii) that E,{g(1)} = Oforall e ®;
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(iii) that vary(g) < var,(g) for all f € ©.

Now (i) is true because, since ¢ is sufficient for 6, the conditional §-distribu-
tion on X, given t, and therefore the conditional 6-expectation of any function
on X, given ¢, does not depend on 6,

Also (ii) is true because

80) = Ey(g) = Ee{Eo(glf)} = Eo{g(n)}.

Finally (iii) is a particular case of the following more general result, Let.c be
a continuous convex function of a real variable. Then Jensen’s inequality -
which is little more than the statement that

e{du +(1-Duy} < Ae(uy)+(1-De(uy)

- states that if u is a real random variable c{Em)} < E{c(u)}. This inequality
holds also for conditional expectations (see Doob, 1953, p. 33). Now, by a
standard result on iterated expectations (see Meyer, 1965, p. 135), we have

Eo{c@)} = E4[Eo{c®)|t}].

By Jensen’s inequality,

Eo[Eo{c@)|t}] > Eo[c{E#|0)}]
= Eg[c{g@®}].

If we now set c(u) = {u—g(0)}* we have the result that

varg(g) = var,(@).

Before this theorem can be used to establish the existence of M.V.UEs, we
have to demand the existence of a sufficient statistic ¢ with an additional
property. Suppose that we are estimating g(6) and that there exists a sufficient
statistic t with the property that there is a unique function of t, £(t) say, which
is an unbiased estimator of g(6). Then &(t) is.an M.V.U.E. of g(6). For if §(x)
is any other unbiased estimate of g(6), E{g(x)|t} must be §(1); because it is
a function of ¢ which is an unbiased estimator. Consequently, by the Rao-
Blackwell theorem

vare{g(1)} < var {g(x)}.

Since £ is any unbiased estimator it follows that §(z) is M.V.U.

So another question arises. How can we ascertain whether a sufficient
statistic has this additional property? Sometimes we can do so by using the
notion of completeness of a family of distributions.

Completeness

Definition. Let {P}:0 € ®} be a family of distributions on a space Y of points y.
This family is said to be complete if E,{f(»)} = 0 for all e © implies
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f(y) = 0 almost everywhere. If in this statement f is restricted to be a bounded
function, the family is said to be boundedly complete. Clearly completeness§

implies bounded completeness.

It is comparatively easy to see that if a family of distributions on a space Y is §
boundedly complete then no non-trivial partition of the space is sufficient for f 3

the family. Suppose, for instance, that each set of a sufficient partition of Y
contains just two points: let the points of a typical set A of the partition be
y., v,. The conditional distribution Py, over these points does not depend
on 8. Suppose that the probabilities assigned to y, and y, by this conditional
distribution are
. 1 i ]
pand 1 —p respectively. Let /(y,) = —and f(y,) =— T
p =P
Then E(f|A) = Eo(f|A) = 0.

Defining f similarly for every element A of the partition yields a function, not
identically zero, such that E,(f) = 0, so that the family of distributions is not

boundedly complete. The general case, where each element of the partition o g E

may have more than two points is similar.

It follows that completeness is related to minimal sufficiency. Suppose that
t is a sufficient statistic for a family {Py:0 € ®} of distributions on a sample
space X and that the family {Py:0€ @} of distributions of t is boundedly
complete. Then no function of ¢ which generates a coarser partition of the
sample space then that generated by ¢ is sufficient, by the previous argument.
That is, only one-to-one functions of ¢ are sufficient. Subject then to mild con-

ditions which ensure the existence of a minimal-sufficient statistic, ¢ is minimal Ji

sufficient. However, as we shall see, it is no¢ true that the family of distributions
of a minimal-sufficient statistic is necessarily complete.

Example

Consider the family of binomial distributions with densities
<':>0'(1—6)"" 0<0<1
and suppose that

S 1) (?)9'(1—9)"” =0 forall@in[0,1].
=0

t

This implies that

n 9 1

Y £ <”> <—- =0 forall §in (0, 1),
=0 t/)\1-6

thatis, 3 () (’;) ¢ =0 forallg > 0.
t=0
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This polynomial identity implies that f () = 0,t=0,1,...,n and so the
family of binomial distributions is complete.

Now suppose that we are dealing with n independent trials with probability
6 of success. We have seen that the statistic ¢ defined as the number of successes
obtained is sufficient for 6. The family of distributions of ¢ (varying 6) is the
binomial family just discussed. This family is complete, hence in particular is
boundedly complete.

Example 2.5.2 is a particular case of a useful general result on completeness
of an important kind of family of distributions, the so-called exponential
family.

Definition

A family of distributions on a Euclidean space is said to belong to the exponential
family if it is defined by density functions, with respect to some fixed measure p1,
of the form

k
pol) = C(O) exp[z Q.-w)ri(x)} h),
i=1

where 0 is some parameter (not necessarily real valued), and the Qs and ts
are real-valued functions.

The exponential family includes many classes of distributions which arise
in practice; for example, binomial, normal, geometric, exponential, Poisson.
The completeness theorem for this family is concerned with the case where
g varies over a subset ® of k-dimensional space; and if § = (6, 6, .. ., 8.,

Qi(e) = 91-

Completeness theorem for an exponential family
Let an exponential family of distributions be defined by the density functions
(with respect to a o-finite measure 1) ‘

P = CO) exp[i Giti(x)] o
i=1

and let 1(x) = {t;(x), 1,(x), . . ., t(x)}. Then the family {P}:0 € O} ofdistri-}
butions of t is complete if ® contains a k-dimensional rectangle.

Again for a proof of this result the reader is referred to Lehmann (1959),
p. 132,

Example

Let x = (xy, Xz, . . - » X,) be a random sample from an N(y, o?) distribution,
so that if @ = (u, 62)
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1 1
pe(x) = W CXP[_EU_Z Z (xi-#)z]

1 1
= W CXP[—'z—O_’z‘ <Z xiz—Zu Z xi+nu2)]

_ exp(=ny’f26%) Yxiom
T TR [ L%

C() exp{Q:(0)t,(x)+ 02(0)2,(x)},

where C(8) = (2n) " t"¢™" exp[—;—i—],

[l(x) = Z xi21

2.6

It

1
Ql(g) = —'é;i

e0=%  6@=Ix
*So we are dealing with an exponential family on R".
Now let us ‘reparametrize’ by setting % = —1/20%, 8% = /o>,
6% = (9%, 6%).

This establishes a one-to-one correspondence between possible values of 6-and § ,~
values of 6*. Obviously we may label the family of distribution on the sample :
space by 6* rather than by 8, without altering the family in any way. We have

pi(x) = C*(@*)exp{f%t,(x)+ 6%, (x)}.

If the original parameter space contains a two-dimensional rectangle, (for
instance, as is usually the case, it is a half-plane), then so does the new para-
meter space, and it follows from theorem 2.5.4 that the family of distributions
of t = (ty, t,) is complete.

Note, however, that this is not necessarily so if the original parameter spact
does not contain a two-dimensional rectangle. Suppose, for instance, that
© = {0:u = ¢*}. Then ©* = {6*:0f < 0,0% = 1} and ©* does not con-
tain a two-dimensional rectangle. We cannot then use theorem 2.5.4 to
deduce completeness of the family {Py:0 € ©}.

The smaller the size of a family of distributions, the easier it is to find a
function which is not identically zero, but whose expectation is zero for every
member of the family. In the example above, we are reducing the size of the
family of possible normal distributions when we limit consideration to those
for which ¢ = ¢2. For each member of this limited family, the expectation of

1

fx) =%—— ) (x,—%)
n—1

26.1

is zero, while f (x) is obviously not identically zero. So the limited family is not
complete. On the other hand, the expectation of f(x) is not zero for every
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member of the larger family, unrestricted by the condition that u = o2~
And indeed the larger family is complete, as we have seen.

Completeness and M.V.U.E.s

The use of completeness in connexion with M.V.U.E.s is straightforward.
For suppose that ¢ is a sufficient statistic whose family of distributions is com-
plete. Then if there exists a function £(f) which is an unbiased estimator of a
real parameter g(6), £(7) is unique in this respect. For if £(¢) and §(2) are two
such functions we have

Eo{g(t)—£()} = g(0)—g(6) = 0 for every f.

Hence by completeness £ (f) = £(1).
So, by the argument of section 2.4.2, £(t) is an M.V.UE. of g(6).

Exdmple

Suppose that x = (xy, Xz, ..., X,) is a random sample from the distribution
on the positive numbers with density §2x ™%, § > 0. Determine a minimum
variance unbiased estimator of 6.

We have density functions with respect to Lebesgue measure and

pe(x) = 6% exp(—6 Z x;) {ljl Xi

From this expression for the density function, two points emerge immediately:

(i) The statistic ¢ defined by t(x) = 3 x; is sufficient for 6 by the factorization
theorem.

(i) Because we are dealing: with an exponential family containing a single
unknown parameter and the range of this parameter certainly contains an
interval on the line — the range is (0, co) ~ the family {Pj:0 < 8 < oo} of
distributions of ¢ is complete.

Hence the problem is solved if we can find an unbiased estimator 8 of 6 and
then determine E(f|#). It is not difficult to spot that 1/x, is an unbiased
estimator of §. Consequently we now have to determine only E(1/x, [0).

In order to do this we first find the joint distribution of x; and ¢. Omitting
details, we find that this joint distribution has density

02"

mx,(t—xl)z""3e'e’ t > 0 0 < X1 <t

Completeness and M.V.U.E.s

¢
i
2
R

o8
X\
N
¥
A
b
X
kS




2.7

271

L

From this it follows that the density of the conditional distribution of x,,
given ¢, is

2n-3
(2n—1)(zn—2)%<1—-’fll> 0< x <1,
and that, in particular,
1 -
E<~—it> = 2n 1.
X, t

So the required M.V.U.E. of 8 is
2n—1

n

2 X
i=1

It is worth remarking that judicious guesswork may well be used to reduce
the calculation in this type of example. For instance, it is possible in the
example just considered to spot that E(1/). x,) has the form af. Then we need
only evaluate g, and this does not involve considering conditional distributions
at all; it requires only the unconditional distribution of ) x;. Therefore
evaluation of ais relatively easy. In this way we find more directly the M.V.U.E,
namely (2n—1)/Y x;.

Discussion

To what extent we have solved the problem of the existence of M.V.U.E.s and
of their determination when they exist, depends on what we can say about the
existence of a sufficient statistic whose family of distributions is complete. Now
there are many instances where the family of distributions of a minimal-
sufficient statistic is not complete. The following is a simple example.

Example

Suppose that n independent trials each with probability 8 of success are
carried out; trials are then continued until an additional k successes are
obtained, this requiring s additional trials. Let the results be denoted by

X = (Xy, X3, s00y Xpy Xpags oo s Xgyg—1, 1) Where as usual each x; is either
1 (success) or O (failure).
We have

Pe(x) — 9r+k(1 ___9)n+s—r—k,

n
where r = Z x;; and s depends on x also.
i=1
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It is clear from the factorization theorem that the statistic t = (r,s) is
sufficient for 6. Moreover, in obvious notation,

po(x) o\ i
= 1—@y~*
po(x) <1 - 9> (=0

and this does not depend on @ if and only ifr = " and s = 5"
So the statistic ¢ is minimal sufficient ; but the family of distributions of ¢ is
not complete because,

oo =150

. n s—1

Eo{f(t)} = 0 forevery 8in(0, 1),
and f(t) # 0.

Lack of completeness of the family of distributions of a minimal sufficient
statistic prevents our using the Rao-Blackwell theorem to establish the
existence of an M.V.U.E. of a real parameter. For then there may be several
different functions of the minimal-sufficient statistic which are unbiased
estimators of the parameter and we have no general means of comparing their
variances. We have therefore only very partially solved the problem of
minimum variance unbiased estimation.

Efficiency of unbiased estimators

While it is desirable from a theoretical point of view to demonstrate that an
estimator is, in some sense, the best possible, it may be sufficient from a
practical point of view to show that some estimator which is being used is
nearly the best possible. If, somewhat arbitrarily, we regard an M.V.U.E. as
the best possible, and if we face a situation where we cannot establish the
existence of such an estimator, there is another possibility open to us. We may
be able to establish a lower bound for the variance of an unbiased estimator
and compare the variance of some unbiased estimator which is being used
with this lower bound. In this way it may be possible to demonstrate that an
estimator is nearly as good as possible relative to the criterion of minimum
variance unbiasedness. An important result in this connexion is the following
theorem.

Theorem (the Cramér-Rao inequality)

Let {Py:0 € ©) be a family of distribution on a sample space X, 0 being a real
parameter and ® an interval on the line; and suppose that, for each 8, Py is
defined by a density function p(., 8) with respect to some natural measure on X
(see section 1.1.4). Then, subject to certain regularity conditions, the variance

Efficiency of Unbiased Estimators
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of any unbiased estimator § of 8 satisfies the inequality

1
[{2 log p(x, 6)/06}?]:

Proof. Since 8 is an unbiased estimator, Eo(8) = 6,

vary(f) > E,

ie. f 9(x) p(x, 8) dx = 6.
X

So E%LG(X)p(x, B dx = 1.

We now assume sufficient regularity to allow differentiation under the integral
sign and so obtain

op(x,0)
L@(x) 7 dx = 1,

or J@(x)wp(x,e)dx=l,
X

a6
. 0 log p(xa 0) -
ie. Ee[é(x) — | = 1.
Writing u = 8(x) and v = @ log p(x, 8)/96, we have then
Eg(uv) = 1.
1
Now Ey(v) = j wp(x, 8) dx
« 00
dp(x, 0)
= dx
L o0
é
=% xp(x, 6) dx,

if again we assume enough regularity to permit differentiation under the
integral sign;

and f p(x, 6ydx = 1.
X

It follows that E,(v) = 0
and so Ey(uv) = covy(y, v).

Now 1 = [cove(u, v)]* < varg(u) vary(v) (see Meyer, 1965, p. 132),
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1
var,(v)’

and so vary(u) =

Since Ey(v) = 0, vary(v) = Eg(v?) and so, on replacing u and v by 8(x) and
0 log p(-, 0)/00 respectively, we have

1
Eq[{0 log p(x, 8)/06}*]

The regularity conditions which we have assumed in deriving this result are
concerned with the possibility of differentiating under the integral sign. These
can fail for two main reasons: first, the density function p(x, ) may not tail
off rapidly enough to ensure appropriate convergence of the integral of the
differentiated integrand ; second, the effective range of integration may depend
on 4, the effective range of integration being the set in X for which p(x, 6) is
non-zero. The first reason for insufficient regularity does not give much cause
for concern in practice, since realistic density functions do tail off very rapidly.
However there are cases of practical importance which will be exemplified
later where the theorem fails for the second reason, so that some care must be
exercised in its application.

vary(f) >

Fisher’s information

The quantity E,[{0 log p(x, 8)/00}*] was called by Fisher the amount of
information about @ contained in an observation in X. It is often denoted by
Iy, and the inequality is then

varg(B) = I; .

This demonstrates the reason for the nomenclature. The more information
about 8 provided on average by an observation, the smaller we might expect
the variance of a ‘good” estimator to be. It is worth noting also that if
X = (X4, X3,. .., X,) and the x;s constitute a random sample from a distribu-
tion, the information (according to the above definition) provided by the set
of x;s is simply n times the information provided by each, For if the distribution
from which the sample is drawn has density function p*(-, 8) we have

d ok
e - o *
% log p(x, ) izl % log p*(x;, 6).

The right hand side is the sum of n independent, identically distributed,
random variables each of which, subject to the kind of regularity demanded
in the theorem, has zero mean.

2
Let iy = Eo[{% log p*(x,, 6)} jl

Fisher’s Information

\
|
|
i
i

BRI .
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This is by definition, the information provided by a single observation. It . '_

follows that

a 2
Iy = Eol:{'a_e log p(x, 0)} ]

var, [—(% log p(x, 6)]

]

0
n vary [% log p*{(z, 9)]

nio.

il

The Cramér-Rao lower bound

Theorem 2.8.1 establishes a lower bound for the variance of an unbiased JE

estimator. It does not tell us how sharp is this lower bound, how nearly it can
be attained. The following result shows that only in exceptional circumstances
can the bound be attained.

Theorem

Subject to the regularity conditions of Theorem 2.8.1, there exists an unbiased
estimator whose variance attains the Cramér-Rao lower bound if and only if

0 log p(x, 6)/66 can be expressed in the form 8 log p(x, 6)/06 = a() [6(x)—6]
and in this case a() = I,.

Proof. In the notation of Theorem 2.8.1, the critical result which led to the
lower bound was the fact that

[cove(u, v)]* < var,(w) vary(v).

Assuming that neither u nor v is constant, we have equality here if and only .

if u and v are linearly related (see Meyer, 1965, p. 132); more precisely,
iff v=Ey(v) = a(6)[u—Ee(w)],
that is, iff v = a(®)[u—~0]

)
or — log p(x, 6) = a(8)[8(x)~6].

Moreover, in this case,

1 = covy(u, ) = -VJZ—Z%

sothat a(f) = vary(v) = I,.

Minimum-Variance Unbiased Estimators
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Example

Let x = (x;, X, . .., X,) be the results of n independent trials in each of which
the probability of success is 6.

Then p(x, 6) = §m(1 -y~ =),
where m(x) is the number of successes in the n trials.

mx) n—m(x)  n _
a2 ._—-———0(1_9)[9(x) 61,

8
7610870, 0) = —=———p

m(x) . . . .
where 8(x) = -—(2 is the proportion of successes in the # trials.
n

So m(x)/n is an M.V.U.E. of 8 and
<m(x)) 6(1—-6)
var, )= .

n

This example illustrates the positive application of Theorem 2.10.1 in that
it concerns a situation where regularity conditions are easily satisfied and
0 log p(x, 0)/06 can be expressed in the appropriate form ; this leads us imme-
diately to an M.V.U.E. However such positive applications of the theorem are
few in number. The theorem nevertheless has considerable practical impor-
tance, for, as we shall see in a later chapter, in the case of large random samples,
d log p(x, 0)/06 can often be expressed approximately in the form required
by Theorem 2.10.1 and this enables us to find large-sample estimators which
are nearly as good as possible, in the M.V.U. sense.

Efficiency

Even if we are dealing with a situation where Theorem 2.10.1 cannot be used,
because @ log p(x, §)/00 cannot be expressed in the form there required, it is
still possible to use the Cramér-Rao inequality (Theorem 2.8.1) in the follow-
ing positive way. We may define the efficiency, eff (8), of an unbiased estimator
of a real parameter by

It
< @) var,(8)’
that is, by comparing its variance with something which we know cannot be
bettered. If it turns out that eff (§) is uniformly (in 6) near 1, this is a positive
recommendation in favour of 8 as an estimator. However, we cannot argue
that § is a poor estimtator because eff (f) is not uniformly near 1, for if we are
dealing with a situation in which the lower bound I ! cannot be attained, it is
quite possible that the efficiency of every unbiased estimator is low. We have
proved nothing to the contrary and indeed the following example demonstrates
that this possibility is not just idle speculation.

Efficiency
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Example

Consider the case where x = {x,, x5, ...
distribution on the positive numbers with density 82xe™%, 6 > 0. In example
2.6.1 we showed that (2n—1)/) x; is an M.V.U.E. of 6. It is not difficult to
calculate that

[Zn-—l] e
varg -Z..;T = 2("-—-1)’

while ! = —.

If nis large the Cramér-Rao lower bound is nearly attained by the variance of
the M.V.U.E. However if n is say 2, the M.V.U.E. has efficiency 0-5 only. So
of course every unbiased estimator has low efficiency.

Note. In calculating the information I,, the following result is often useful.

Lemma

Subject to regularity conditions,

o?
Iy = Ee|: 702 log p(x, 0)}

&* 8 [tap
Proof. 5 logp = E |:; 5§:|

3 6p 1 *p
= 26 p 7 567

P
BE log rP 1 *p
p p 6%

18%
Now Egl: 6’62:| x592d

az
= J p dx, given sufficient regularity
X
62
= 555 1 = 0

Thus Eg|:—-

&? d 2
Wlog p} = E,,[(Ea logp) :] = [.
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Generalization of the Cramér-Rao inequality

The Cramér-Rao inequality (Theorem 2.8.1) can be generalized to a vector-
valued parameter 6. The analogue, for a parameter 8 e R®, of Fisher’s informa-
tion is an information matrix B,, the s x s matrix whose (i, j)th component is

E 0log p(x, 0) 8 log p(x, 6)
a8, %0, I

and subject to regularity conditions as above, we have

g |2logp(x0)dlogp(x, 0)) o % log p(x, 0)
0 a6, 00, T 6,08, |

The generalization of the Cramér-Rao inequality states that, again subject
to regularity conditions, if § is any unbiased estimator of 6, then its variance
matrix, the s X s matrix

= E,[0-0)@-0)], .

var,(8)

is such that var,(f)— By ! is positive semi-definite, Thus B; ! is in a sense a
‘lower bound’ for the variance matrix of an unbiased estimator of 4.

If we assume sufficient regularity, as in section 2.8.1, the proof of this result
is as follows. Let § = (8,, 85, . . ., §,) be an unbiased estimator of

9 =(6,,6,...,0).

We have j 8,(x) p(x, 6) dx = 6,,
X

a1 '
so that J f.(x )—M p(x,8) dx = &, the Kronecker delta,

this holding fori,j = 1,2,...,s
If now we write v for the vector-valued random variable whose ith com-
ponent is @ log p(x, 8)/06;, then:

(i) E(Bv') = 1, the unit s x s matrix; this being the matrix expression of the
above equations;

{il) E¢(v) = 0, as in section 2.8.1;

(iii) vary(v) = By, by the definition of By.

Because of (i) we may write (i) as covy(§, v) = L.

Now consider the variance matrix of the vector [9] This is
v
cove(l, v)] = [var,(@ 1 7).
vary(v) 1 B,

Generalization of the Cramér—-Rao Inequality

covy(v, B)

[vare G
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Since the matrix on the right side is a variance matrix, it is positive semi-
definite. It follows that the matrix

1 =By']{va@® 1 I .
I B, || —B;!

is-also positive semi-definite, and, as is easily verified, this last matrix is simply'
var,(8)— By .

Another way of looking at this generalization is worth noting. Let
B =c 6 +c0,+ ... +c,b

be a linear combination of the unknown components of the vector 8, the ¢;s
being known. Then if & is an unbiased estimator of 8, ¢'f is an unbiased
estimator of ¢’@ and

var,(c'f) = ¢ var,(d)c.
The above result states that
vary(¢'®) = ¢'By e

Hence if we can find an unbiased estimator § such that vary(f) = By ! this
estimator has in this linear sense smaller dispersion than any other unbiased
estimator of 6.

The following is a very simple illustration of the above results, which does not
really exhibit their usefulness in practice, but which avoids the complicated
manipulation involved in a more realistic application. The reader may use it
to verify general statements involved in the above proofs.

A random sample of n individuals is drawn from a very large population in
which each individual falls into one of three classes. Of the n drawn, x; are in
classi,i = 1,2, 3,s0that x, +x, +x; = »n. The population proportions in the
three classes are 8,, 8, and 1 -8, — 8,, respectively. Determine a ‘lower bound’
for the variance matrix of unbiased estimators of 8, and 0,.

Here X = (xb X2, X3), 0 = (ela 02)9
n! X3 (X2 X
p(x, 0) = PEPAEN 67032(1— 0, —6,)™.

It is easily verified that
0*logp(x,6) X X3
207 6 (1-6,—6,)%
Now Eg(x;) = nf, and Ey(x3) = n{l—0,—0,),

&% log p(x, 6) 1 1
so that Eol:'——————(%—{‘—“‘ =N E"'m .

Minimum-Variance Unbiased Estimation
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From similar calculations we find that

By=n| —+ ! !
0, 1-6,~-6, 1-0,-86,
1 1 1
1-0,-0, 6, 1-0,-0;

It is not difficult to show that

B—1=l[ 0,(1-6,)  —0,0, }
’ ~0,06, 0,(1-0,)

n
and this is the required lower bound.

It may be verified that in this case the lower bound is attained by the
variance matrix of the ‘obvious’ unbiased estimators

Concluding remarks

In this chapter we have adopted the point of view that a good estimator of a
real parameter is one which is minimum-variance unbiased. It must be re-
emphasized that there is an element of arbitrariness in this criterion, particu-
larly with regard to unbiasedness, which was forced on us by the consideration
that, in general, estimators of uniformly minimum mean-square error do not
exist. However, granted in the meantime that this is a generally accepted
criterion, how far have we progressed in the problem of establishing the
existence of, and calculating, M.V.U.E.s? The answer is, ‘Not very far.” There
are many situations where either no M.V.U.E. exists or where we cannot
establish whether or not such an estimator exists. A simple illustration of the
former case is the fact that, if 8 is the probability of success in a trial, there
exists no unbiased estimator of the odds in favour of success, namely 6/(1 —6),
based on the results of n independent trials (see Hodges and Lehmann, 1964,
p. 217). Also it is generally true that if the family of distributions of a minimal-
sufficient statistic is not complete (see Example 2.7.1), then it is extremely
difficult to establish whether or not an M,V.U.E. exists.

It would be possible to pursue this line of thinking further, to investigate
other conditions which might ensure the existence of an M.V.U.E,, or to
adopt a new criterion which might cover situations where no M.V.U.E. exists
and to investigate its implications; but statistics is primarily an applied
subject. Observers wish their results analysed and inferences made, and so
methods have been developed which have a strong intuitive appeal, but
which cannot always be justified in the kind of terms which we have been
discussing. We shall now turn to. two important methods of estimation and
we shall investigate to what extent these methods can be justified by the

Concluding Remarks
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2.1

" interval (0, 6). Show that max (xy, X, . . ., X,) is sufficient for 0 and that an

criterion of minimum-variance unbiasedness.

Examples _
Let Xy, X3, ..., X, be a random sample from a Poisson distribution with 4
unknown mean 0. Find an M.V.U.E. of e?, the probability of the zero class. ¥
Determine also its variance. t 3

2.8

Let Xy, Xz. .., X, where n> 3, be a random sample from an Ny %)
distribution with s and ¢? unknown. Find an M.V.U.E. of y?/s>.

If x,, X3, ..., X, are independent random variables each with probability | 1 29

density 8e”**(x > 0, 8 > 0), show that the random variable which takes the
value 1 when x, > kand the value 0 when x, < k, is an unbiased estimator of JE
g(6) = e™**. Hence show that, for a suitable choice of statistic ¢,

0 whent < k

& — — n—1
80 = [i—t-—k—] whent > k

is an M.V.U.E. of g. (Camb. Dip.)

If x,, X3, . . . » X, is @ random sample from an N (», ¢2) distribution, show that
the estimator

;1‘ Z; (x.'"’_f)z

of 62 has smaller mean-square error than that of the M.V.U.E.,

l n .
———Z(x,.—x)Z.
n—1¢

i=1

Let x,, X3, .. . , X, be a random sample from the uniform distribution on the

unbiased estimator for  of the form k max (x,, X5, . . . , X,) exists. Determine
this unbiased estimator and find its variance. Compare this variance with the
Cramér—-Rao lower bound for the variance of an unbiased estimator and
explain why this lower bound is not applicable in this instance.

A random vector x has a distribution which is known apart from the values of
two real parameters 8, and 8,. Prove that if ¢, is sufficient for 8, when 8, is
known and ¢, is sufficient for 6, when 6, is known, then (t, t,) is sufficient
for (8,, 6,).

A random sample of size n is available from the distribution on the positive
real numbers with density

x+1 '
6(@+1) ’

Minimum-Variance Unbiased Estimation a5

where 6 is an unknown positive parameter, Obtain an unbiased estimator of
(3+26)(2+6)/(9+1) whose variance attains the Cramér-Rao lower bound.
(Camb. Dip.)

An entomologist samples at random from a large population of a particular
species. He records the sex of each insect and stops sampling when he has
obtained M males (M > 1), by which time his total sample size is x. Find an
M.V.U.E. of 6, the proportion of males in the population. (Camb. Dip.)

Leaves of a plant are examined for insects and it is found that x; leaves have
precisely i insects (f =.1,2, ..., x; = N). The number of insects per leaf is
believed to be Poisson, except that many leaves have no insects because they
are unsuitable for feeding and not merely because of the chance variation
allowed for by the Poisson distribution. The empty leaves are therefore not
counted. Show that

© .
LN
i=2 N

is an unbiased estimator of the Poisson parameter p, and determine its
efficiency. (Camb. Dip.)

Examples
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The Method of Least Squares

Examples

The intuitive appeal of the method of least squares may be illustrated by two
simple examples.

Suppose that Xy, X,..., X, 82 random sample from a distribution on the line
and that we are interested in estimating the mean, 6, of this distribution. We
may write

x; = 0+¢;,

where ¢, is the deviation or error of the observation x; from the mean of the

underlying distribution. A reasonably optimistic attitude here is to assume § ;

that the observations are trying to give us information about @ and that the
deviations &y, &5, . . . , £, 4T€ In sOMe sense small, Therefore a plausible method
of estimating @ is to choose as estimate a number for which these deviations
are small, and one way of doing so is to choose as estimate a value of & for

which Y &7 is as small as possible: that is, to estimate 6 by the number

i=1
"
§(x,, X2, . . - » X,) which minimizes Z (x;—0)?, regarded as a function of 6.
i=1

If we do this, then of course

« 1
00xy, X35 0 oo Xn) = ;(x,+x2+ c, X)) =X,

the mean of the observations, so that our plausible method leads to an
intuitively appealing result in this case.

As another example, suppose that observations xi, X, . .., X, ar¢ made at
different values a,, az, . . . , d, respectively, of a ‘concomitant variable’ a. The
xs are random variables and the as are knowny non-random numbers. For
instance the a;s might be different levels of a fertilizer and the x;s correspond-
ing yields of a crop. The as are then controlled by the observer but there are
factors. affecting the xs outwith the observer’s control — weather for instance.
Suppose we know that ‘the mean of x varies linearly swith a’, but we do not
know the exact form of this relationship. In other words we know that

The Method of Least Squares
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E(x) = a+ fBa;, though and B are unknown. Then we may write
x; = a+fa;+é;,

and, acting on the same optimistic principle as previously, estimate « and f
by these numbers which minimize

i = (gi—“—ﬁai)z'

M:
[\/]x

£
1 i
This method is again appealing provided that the deviations €y, €2, -« &n
-all have ‘the same chance of being small’, but if some have more chance of

being small than others it might seem more sensible to estimate « and B by
minimizing some weighted sum of squares

H

1

i

i

w(x;—o— Bai)zs

M:

i=1

the ws being weights which are large for those is for which ¢; is liable to be
small and small for ;s liable to be large. Another complicating factor which
might lead us to think again about this method of estimation is the possibility
of interdependencies among the &s. It is not then so obvious how we might
adjust the method. However a mathematical investigation of the properties of

this method will suggest an appropriate adjustment.

Normal equations

These two examples are particular cases of the following general situation, A
random vector x = (X4, X35 - - + » X) 18 such that

x = AB-+e,

where A is a known matrix of order nx p with p < n, B =By, B2....B,)is
a vector of unknown parameters and & = (1,83, . . - » £4) 18 @ vECtor of ‘devia-
tions from the mean’ or ‘errors’, that is, a vector whose expected value is zero.
In this general situation we may apply the principle used in the examples above
and estimate § by minimizing the sum of squares

&2 =¢'s= (x—AB)’(x-—Aﬁ).

ot

#

i=1

This method of estimation is called the method of least squares, for obvious
reasons, and any minimizing value B(x) is called a least-square estimate of f.
The function B, a function from R” (Euclidean n-space) into R?, is a least-
squares estimator. However we shall not maintain the notational distinction
between J(x)and f and we shall use the latter for both. The context will make
clear the sense in which it is used.

Determination of a least-squares estimate is not a difficult problem. We

Normal Equations
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have to choose f to minimize the quadratic form

(x—ABY (x—Ap)

in the components f8, f,, . . . , B, of B. Differentiation of this quadratic form |
with respect to 8, B, . . . , B, leads to the so-called normal equations satisfied
by a least-squares estimate, namely

AAB = A'x,

and any solution of these equations does in fact minimize (x —Af) (x—Ap)

and so is a least-squares estimate (see Appendix A). If rank A = p, then A'A, |

which has the same rank as A (see Appendix A), is non-singular and there isa
unique least-squares estimate

B=(AA) A

Ifrank A < p,then A'A is singular, the normal equations do not have a unique-

solution, and there is a family of least-squares estimates which may be deter-
mined in any particular case by the usual methods for solving a system of
linear equations.

Geometric interpretation

The intuitive appreciation of linear algebra is greatly aided by a geometrical |

interpretation in which vectors are represented by points and matrices are
regarded as representations of linear transformations or functions (Hohn,
1964, p. 182). This applies equally to the linear statistical model, x = Af+e,
which we are investigating. :

The sample space here is R" and there is a true distribution on this space
which we do not know. We do have some knowledge about the mean vector
or centre 0 of this distribution, for we know that § = E(x) can be expressed in
the form A in other words that 8 lies in a subspace w of R", the subspace

spanned by the columns of A, which we shall refer to as the range of A. Given .

an observation x, we estimate 8 by § = Ap.

Now x—8§ is orthogonal to w, since A(x—8) = A'x—A'AB = 0, so that
x— 0 is orthogonal to every vector of the form Af. This means that we estimate
6 by the projection of x on w, or'by the point of w nearest to x; and this seems
reasonable on the grounds that x is probably near the centre of the distri-
bution. Here we have the geometric essence of the method of least squares,

Of course 8, the projection of x on w, is always unique whatever the rank
of the matrix A. On the other hand, any point of R? which is mapped by A into
B is a least-squares estimate of f. If A has rank p it establishes a one-to-one
correspondence between points in R? and points in @ and then B is unique.
In this case § = A(A’A)”'A’x. The matrix A(A’A)" A’ is symmetric and
idempotent and it represents the orthogonal projection of R on to the range
o of A (see Appendix A). If rank A < p, then A establishes a many-to-one

The Method of Least Squares

correspondence between points of R? and points 6 of w, whose dimension is _
rank A, so that while 8 is still unique, B is not. There is not then a simple
matrix representation for the projection of R" on w.

For the case n = 3,p = 2, we can actually draw pictures for this geometric

interpretation.

f2

l

h =N

Figure 1 The matrix A of order 3 x 2 and rank 2 maps R?onto a
two-dimensional subspace of R?

Figure 1 gives a geometric picture of the case where the observation vector
x has dimension 3, B has dimension 2 and the matrix A (which then has order
3x2)is of rank 2. A may be regarded as representing a linear transformation
from R? into R3, and, because its rank is 2, its range is represented by a plane
in R? {see Hohn, 1964, p. 182). 8 is the projection of x on this plane, and there

is a unique B mapped by A onto 6.

2
!

N

\4' A

Figljre 2 The matrix A of order 3x2 and rank 1 maps R? onto a
one-dimensional subspace of R?

49 Geometric Interpretation
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Figure 2 illustrates the same case except that now, A has rank 1. Its range v
then is represented py a line through the origin. 8 is the projection of x on this § ,.
line. But now there is not a unique § mapped by A onto 6, and the set of  such g

that Af = B is represented by a line in R? as indicated.

Identifiability

'I.'he case where rank A < p in the linear model x = Af+-¢ raises for the first ]
time an 1§sue‘whlch will be of concern later. If we are given a distribution for s, |
the distribution on the sample space depends on B, as this distribution is !

centred on AB. However when rank A < p, different values of 8 yield the same

distribution on the sample space because different values of § correspond to
tl@e same value of AB. It is clear that in this case, while an observation x may ‘
give us some information about A, it can give no discriminatory information :
whatsoever between different values of 8 corresponding to the same value of :

Ap. The parameter f is said to be unidentifiable. More generally, if different

values of some parameter give the same distribution on the sample space, this °

parameter is not identifiable.

When a parameter is not identifiable we may say that two values of it are '
eqL.uvalent if and only if they yield the same distribution on the sample space,
This defines an equivalence relation which partitions the parameter space into 3

quivalencFa classes. Usually then an observation will give information about
which quxvalence class the true parameter belongs to but no information
about which member of this equivalence class the true parameter is. This

difficulty really arises because of our specification of the statistical model -

describing the situation in which observations are made, and it can be avoided
by a different specification of the model. For instance, in the above linear
modﬁel if rank A = g < p, then p—q of the columns of A, say the last p—q
are linear combinations of the remaining g. It follows that, if a; is the ith’
column of A, then ) l

E{(x}) = Bia,+ ... +B,3,
can be expressed in the form
E(x)=yia+ ... +ya8, = Ay,

where A, is the sub-matrix of A consisting of the first g columns of A. Now A,
has rgnk g and v, a g-vector, is then identifiable. Had we specified the mode‘i
in this way there would have been no identifiability problem; but the para-
meter § may have some significance in the practical situation which the
§tatistical model is describing, whereas the parameter y is not so easy to
interpret. ‘Natural” parametrization in the model set up may lead to non-

identifiability, which is more in the nature of an irritant than a source of deep
problems.
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The Gauss-Markov theorem

The method of least squares has been introduced on the purely intuitive basis
that if we estimate the mean of a distribution by the parameter nearest the
observation made, this estimate should be quite good, since the observation is
probably near the true mean. Some stronger justification of the method is
really desirable and such 4 justification is provided by the celebrated theorem
which we shall discuss in this section.

Whereas in chapter 2 we were dealing with real-valued parameters and
estimates of these, we are concerned here with a vector-valued parameter B.
Our criterion for choosing among unbiased estimates of a real parameter was
that of minimum variance; in other words if § and 8 were two unbiased
estimates, § was regarded as better than 8 if var,(0)— vary () were greater
than 0. What is the analogue of this criterion for a vector-valued parameter?
It is that if § and f are unbiased estimates of the vector f and their variance
matrices are varg(B) = Ez(B—B)(B—B) and var (B), similarly defined, then
B is a better estimate than f if the matrix varg (/g )—var,(B) is positive semi-
definite for all B. The dispersion of the random vector B about its mean f is
then smaller than that of §. Another way of putting this is to say that the
variance of any linear combination of the components of B is no larger than
that of the same linear combination of the components of §; symbolically that,
for every p-vector ¢,

vary(c'B) < varg(c'B).

Now, in the identifiable case at least, the least-squares estimate f of fisa
linear estimate in the sense that §;(x) is a linear combination of the components
of the observation x, [t is also unbiased, since
E;(B) = Ez{(A’A)'A'x} = (A'AY *A'Ey(x) = (A'A)TIA'AB = B
The Gauss-Markov theorem proves that subject to certain conditions on the
error-vector ¢ the least squares estimate f is better in the above sense than
any other unbiased linear estimate. This of course is a weaker result than one
which states that an estimator is best in the class of all unbiased estimates, but
the input in the way of assumptions concerning the error vector is weak as we
shall see, and as a general rule in the theory of inference, the weaker the
assumptions, or the wider the family of possible distributions is allowed to be,
the weaker are the results which can be obtained.

The examples in section 3.1 suggest that in order that the least-squares
estimate be best, it may be necessary to require that the components of the
error vector be independent and identically distributed. In fact the Gauss~
Markov theorem requires less than this — only that these components have the
same variance and are uncorrelated. Since the possibility of non-identifiability
of B complicates matters considerably, we give first a proof for the case where
rank A = p so that § is identifiable and the least-squares estimate is unique
and equal to (A’A)"'A'x.

The Gauss—Markov Theorem
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The case where § is identifiable

Let x be a random n-vector expressible in the form x = Af+¢ where A isa
kn‘o}:w;: nx p matrix of rank p, B is an unknown p-vector and ¢ is an error vector
;vfzz}5 hm()z)ﬂ: S(L Z;a; ;2:'1 ésg = 0.21, whe;re o? is unknown, that is the components

nvariance o* and are uncorrelated. Let J3 be the unique

l;zst-sq/ua'res estimc.ztor of B and let ¢ = ¢'B be a linear parametric function.
en c B is an unbiased estimator of ¢ and, if § is any other linear unbiased
estimator of ¢, we have vary(c'B) < varg(¢). :

Proof. Ez(c'B) = c'Ez(B) = ¢'B = ¢ so that ¢’ is unbiased.

Smcg Qisa lx.near estimator it is expressible in the form b'x and since dis
an unbiased estimator of ¢, we have -

B'AB = b {Ey(x)} = Ez(b'x) = Ez(¢) = ¢'B forevery B.
Hence b'A = c"

Now vary(@) = vary(b'x) = b'(varyx)b = o?b'b,
and similarly
vary(B) = var, {(A'A)"'A’x} = (A'A)" A’ varg () A(A'A)™" = > (A'A)”L
It follows that vary(c'B) = ¢*c’(A'A)"*c = a*V'A(A'A)™'A'D.
To prove the theorem we must therefore show that
b = VAA'A) AL,

or t'ga:) I-A(A'A)” 1A_’ is po§itive semi-definite. This follows from the easily
verifiable fact t’hat'thls matrix is idempotent. (Incidentally it represents the *
orthogonal projection of R" on to the orthogonal complement of the range of ’

Aand b'{I—-A(A’A)"'A'}b is the squ i
e T } quare qf the distance of the vector b from

This completes the proof.

The general case
Iff rz;lnk A <p, tw,o c.omp)licationS arise in the above proof. The more obvious
of these is that A’A is tHen singular and we do not have the previous simple

expression for a least-squares estimate f. It remains true however that any
least-squares estimate satisfies the equation

A'AB = A'x,
We note, for subsequent use, that this implies that if @ is a vector in the range

()f A t] 1at 18, Whlch can b ar CO]llbl ati1o; ()‘ the
N , a vector c expressed asa hne
n n

then a'Af = a'x.

The second and less obvious qomplication is the fact that when rank A < p

The Method of Least Squares

not every linear parametric function possesses an unbiased linear estimator,
for in order that b'x should be an unbiased estimator of ¢’ we require (see
Theorem 3.5.1) that ¢’ = b’A or that ¢’ should be expressibleé as a linear com-
bination of the rows of A. When rank A = p, the rows of A span RP and every
p-vector ¢’ can be expressed as a linear combination of these rows. This is not
so when rank A < p. In considering the general case therefore, we must
restrict attention to linear parametric functions ¢'f which have unbiased linear

estimators or are estimable.
Suppose then that ¢ = ¢'f is an estimable parametric function. We wish to
show that, if B is any least-squares estimate of B, ¢'B is an unbiased estimator

of ¢ and that

vary(c'B) < varf (@)

for any other unbiased linear estimator é of ¢; this being subject to the con-
ditions of Theorem 3.5.1 apart from that on rank A. Now since ¢ is estimable
there exists a b e R" such that ¢’ = b'A. Let a be the projection of b on the
range of A so thatb—a is orthogonal to the range of A, or (p—ayA = 0.Then
a'x also is an unbiased estimator of ¢ since

Egla'x) = Es{(a—b)x+ b'x} = (a—bYAB+ ¢ =¢.

Moreover a is the only vector in range A such that a'x is an unbiased estimator
of ¢. For suppose there is another such vector a*, Then we have for every B,

Eg{la—a*yx} =0
ie. (a—a*YAp=0
andso (a—a*YA =0.

This means that a—a* is orthogonal to range A, but since a and a* are both
in range A, so is a—a*. Therefore a—a* = 0,ie.a = a*.
Now varg(a'x) < varg (b'x), where b'x is any other unbiased estimator of ¢,

since varg(a'x) = o%a'a,
while vary(b'x) = ¢’b'b = o {da+(b-a)(b—a} > ola'a.

We now complete the proof of the fact that
vary(c'B) < vary($)

by showing that vary(c'p) = varg(@'x)..
Since a'x isan unbiased estimator of ¢, we havedA = ¢\

Therefore c'B = a’/AB = a'x,
since g is in range A and B satisfies the normal equations. It follows that
vary(c’B) = o*a'a.

It remains true in the general case, that any least-squares estimate is better
than any other unbiased linear estimator in this special sense that it leads to
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unbiased estimators of estimable linear functions with smaller variance.

Remarks

There are many statements and proofs of this celebrated theorem with various V
degrees of generality. The proof given in section 3.5.2, which incidentally is ‘S
valid also when rank A = p, is essentially the same as that given by Scheffé 3

(1960).

It will be seen that in the general proof (contrary to the proof of section ‘,
3.5.1) we have never explicitly stated that any least-squares estimator f of fis §
unbiased. The reason for this is as follows. We may regard any component of }
B, say its first component B, as a linear parametric function ~ the function B

¢’ where ¢’ = (1, 0,0, ..., 0). It may be that this is not estimable. In the
unlikely event that the first column of A consists entirely of zeros, it is

immediately obvious that no observation gives any information about By and ;
that 8, is not estimable. So in this case, as there exists no unbiased estimator !

of B, a fortiori there exists none of B. However it is true that if a component

B; of Bis estimable, the corresponding component of any least-squares estimate 1
of B is an unbiased estimator of 8, this follows from the fact established in

section 3.5.2 that ¢’f = a’x, in the notation of that section.

Weighted least squares

In the last paragraph of section 3.1 we anticipated the possibility that least-

squares estimators might not be ‘best’ when the components of the error -

vector ¢ did not all *have the same chance of being small’, and indeed a crucial
part is played in the above proofs by the assumption that the variances matrix
of the error vector is ¢?I, that is, that its components have the same variance
and are uncorrelated. The algebra of the Gauss—-Markov theorem suggests the
appropriate modification to the method of least squares when either the errors
have different variances or when they are correlated.

Suppose then that we consider the linear model

x = Af+e¢

with the same assumptions as before except that now, instead of having
var ¢ = ¢°l, we assume that var ¢ = 2%, where I is a known positive definite
matrix. This allows for the possibility of differing variances among the ¢;s and
for correlation between them. By a non-singular linear transformation we can
transform this model to that previously investigated by the Gauss~Markov
theorem, For since T is positive definite, it can be expressed in the form PP’
where P is non-singular. Now let # = P~ !¢ and y = P~ 'x, Then we may
write the model in the form ‘

Py = Af+Py
or y =P 'AB+n = BB+, say.

The Method of Least Squares

Also var = P~ i(var P~} = P IPPP' ! = ¢, so that h}: te;m;s‘gi s};,’
B and # the model is just that already_ discussefi. W<=T tperefogg o tailgn et
estimator of B (that is, an unbiased estimator with minimum ispers n,biased
sense of the Gauss-Markov theorem, among the class of linear w
estimators) by minimizing the sum of squares

(y—BBY (y—BB). o
—BBY(y—Bp) = (x—AB)PP) Hx—Ap)"
Now (y—BB)Y(y m:(x—Aﬁ)Z“(x——Aﬂ).

. .2

Hence in the case where the error components have yarflance mta;;er;xt;ai, t\;/l:
i i inimizing this quadratic form ra

obtain best estimators by minimizing he

straight sum of squares. In particular, suppose tha_t the comio:lents of t

error vector are uncorrelated, but have unequal variances so tha

H 2
> = diag{o?, 03,..., 00}, say.
The expression which we minimize may be written
2
(x;—ai1 Bi—%i2 Bo— . —ap B,) .
ot

i=1 ) .
i i ce

In other words we weight each square in the sum by the mverse' of thg varelar;ve

of the corresponding error component. In this wayhas anticipated, we g

i i iable to be small.
ore weight to the errors which are lia ‘
" Itis wogrth remarking that even when var ¢ cannot be expressed in tl}e fo’rm
21, but has the more general form 0%, an estimator obtained by minimizing

the straight sum of squares (x— ABY (x— Ap) is still unbiased. For instance, in ’

the case where A has rank p, this estimator B is given by

B = (A'A) 'A'x

and since E;(x) = Ap we still have E, (3) = B. However, in this case
var f = a2(A'A)" HAZA)NAA) Y,

whereas if f is the estimator minimizing

(x—ABYE™}(x—AB) = (y—BBY(y—BB),

we have

var f = o?(BB)"! = c*(AZ7'A)7".

The Gauss-Markov theorem tells us that the matrix
(A'A)"HA'ZA)AA) 1o (AZ7A)!

is positive semi-definite, so that, in particular, the diagonalfelements :(f ntilrli
i i i that the variance of any com

matrix are all non-negative. This means . i one

of Bis at least as large as that of the corresponding component of §, and it may
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we!l be considerably larger. So while straight least squares yields unbiased
estimators of the components of § in this situation, it may be very inefficient

in the sense that the variances of these estimators are unnecessarily large 1
¢l

relative to the best we can achieve using linear estimators,

Estimation of o2
In practice when the model
x = Af+e

. — 2 . . "y s
with var e.= ¢°l,, is appropriate for describing some observational situation,

not only will § be unknown, but so also will °>. We are then faced with the &

problem of: estimating this unknown quantity as well as . If § is any least-
squares estimate of § then we might expect that the residual sum of squares

(x—ABy(x—Ap)

will on average increase and decrease with 2, And indeed it is not difficult to ;
construct an unbiased estimator of ¢ from this residual sum of squares. We

proceed as follows.

Wehave &= (x—AB)+A(B~B).

Now A(f—B) is a vector in range A, while (x—Ap) is orthogonal to range A |

(since A’(x—AB) = 0). It follows that if we change the basis in R” to a new
orthonormal basis whose first r elements are in range A (r = rank A) and

whose rema.ining n—r elements are orthogonal to range A and if, under this
transformation, :

(er 8o 8) = (M1s M2+ oo M)y

then AQB-B - 01,15 ...,1,0,0,...,0)
and (x—AB) = (0,0,...,0,%srs Myss - s M)
Hence (x—AB)(x—AB) = nfus+ndzt ... +nk

Ifuncorrelated random variables with zero means and common variance ¢*

are subjected to an orthogonal transformation, the resulting random variables
have the same properties. (3 = Pe, where PP’ = 1,; E(n) = PE(e) =0 and
varn = Pvar ¢P’ = ¢’PP’ = ¢?1,)

So E(n}) = o2, for all i.
Hence E;{(x—AB)(x~Ap)} = E< Y nf) = (n—r)e?,

1 R
so that n—:—; (X“Aﬂ)/(x_AB)

is an unbiased estimator of a?.
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The modification required when var ¢ = 2%, with T known, instead of
o1, is clear. In the notation of section 3.6,

1 - - 1 - “
—— (y—Bfy(y—BB) = — (x—ABY 7 (x—Ap)
n—r n—r
is then the corresponding unbiased estimator of a%,

Variance of least-squares estimators

Another practical consideration which we must take into account is as follows.
There is little point in practice in knowing that an estimator of an unknown
parameter is best in some sense without the additional knowledge of how near
to the parameter our estimate is liable to be. We shall consider this question in
general later and in the meantime we content ourselves with the remark that
the variance of an estimator gives some idea of its reliability or accuracy. Thus
when an estimate is given in practice it is usual to quote also its standard
deviation or an estimate of its standard deviation.

Suppose then that we consider the linear model

x = AB+e,

where var & = ¢21,and A has full rank (= p)so that no identifiability problems
arise. Then the unique least-squares estimate B of B is given by

B = (A'A)'A'x.
We can deduce immediately that
(A'A)” A var x A(A'A)” !
= a?(A’A)"".
Now we can calculate an unbiased estimator of 6% by the previous section,
namely,

8 = — (x—ABY(x—AB),
n—p

Il

var 8

and it follows that 82(A’A)™ " is an unbiased estimator of the variance matrix
of . If we are interested in estimating a linear parametric function ¢'B, say,
then ¢'f is a minimum variance unbiased linear estimator of this and
varyc'B = o*c'(A'A) e
Hence an estimate of the standard deviation of our estimator ¢’f is
8J{c'(A'A) e},
a number which can be calculated from the given observations.

In particular, if we wish to estimate a particular component B; of B, this is

estimated by f; and
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39

58

o* x (i, i)th element of (A'A)™!
8./{(, i)th element of (A’A)™1}.

var B,‘
while estimated S.D. ﬁi

I

Normal theory

As a general rule in statistical theory, the more we are prepared to assume |
about the probabilistic model underlying observations, the stronger the results 3E-
we can prove regarding estimators. In the preceding sections of this chapter !
we have made assumptions about the first and second moments of the error S
vector &, but no further assumptions about the form of its distribution. Then 3 1

we were able to demonstrate that least-squares estimators were best in the

class of unbiased linear estimators. Suppose that we add the assumption that -

¢ has a normal distribution, so that our model now becomes

x = AB+s,

. 2 . . ] 4
where ¢ is N(0, ¢*1,); A is known, and § and ¢? are unknown. Can we now 3%
prove something stronger about least-squares estimators? The answer is yes,

and we appeal to the Rao-Blackwell theorem to demonstrate this.
With the additional assumption of normality of errors, we have

px; B, 6% = (2r0?) *exp [—%‘2 (x-—Aﬂ)’(x—AB)J

4
x'x ;
= C(8, GZ)CXP["T‘ﬁ‘Z%}'i}
i=1

where y = A'x.

Nowwrite L(x)=y, (i=12,...,p)
Loy (%) = Xx'x,
and t(x) = {t;(x), t2(%), .. ., tpur (X)}.
Also, reparametrize in terms of 8 = (0,05, ..., 0, 1),

Where i=% (i=1,2,---,P):

1
and 0P+1 = ——2—07.

Then p(x; B, 0%} can be expressed in the form

Cptt
C*(B)expl:pz e,x,.(x)}
i=1

!

It follows from the factorization theorem that ¢(x) is sufficient for 8 and from
Theorem 2.5.4 on exponential families that the family of distributions of ¢ is
complete, if there are no prior restrictions on f and o2, because then the para-
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meter space contains a (p+ 1)-dimensional rectangle.
Now B, is a real function of 0, B; = —16,/0,,, and B, is a function of the
sufficient statistic ¢, since

B =(AA)AX = (A'A)" .

Moreover B; is an unbiased estimator of f;, (We assume here that A has full
rank so that B, is estimable.) It follows that B; has minimum variance in the
class of all unbiased estimators of ;(i = 1,2,..., p), by the argument of
section 2.6. Incidentally, if s* = (x—Ap)(x~Ap), then s*/(n—p) is a
minimum-variance unbiased estimator of ¢® in this case.

Thus by adding the assumption of normality to the linear model we are able
to establish that least-squares estimates are optimal in a stronger sense than
they are without this assumption.

Note

It is convenient at this stage to prove, for subsequent use, a result concerning
the distributions of § and s® when the assumption of normality of the error ¢
is added to the linear model assumptions previously adopted.

Since j is linearly related to a normal random vector B = (ANA)A'x,
where x is N(A, 621)) we can state immediately that B itself is

N{B, o2 (A'A)"'}.

Furthermore we have seen in section 3.4 that there exists an orthogonal matrix
P such that if y = Ps,

then PA(B'—/E) = (7“, r’2a-"vr,p’ 0’ 09‘°'10)/
and P(X‘—AB)= (0,0,-~-90s’1p+13”':r’n),:

Now since the components of ¢ are independent N (0, ¢?) random variables
and since P is orthogonal, it follows that 7,75, . . . , 1, are also independent
N(0, 0*). Therefore f—f§ and x— Ap are independent. Furthermore

x—ABY(x—AR)= Y n}

) i=p+1
and so s* = (x—AB) (x— Ap) is distributed as c*x*(n—p).

In other words, with the normal assumption the least-squares estimates
BiBa... B, of BisBas--s By respectively are jointly normally distributed
and are independent of the residual sum of squares s* which is distributed as

a*x*(n-p).

Least squares with side conditions

Until now in this chapter we have considered the linear model with E(x)
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expressed in the form AB. Sometimes the natural expression of the model in
terms of the parameters of interest does not occur in this way. In particulatg
these parameters may be mathematically related to one another and often th )
relationships between them are linear. In the latter case we have a model in
which E(x) is expressed in the form Af with B;s satisfying certain side con}
ditions, say HB = 0, where H is a ¢ x p matrix (¢ < p) of known coefficients,
It must be emphasized straightway that from a theoretical point of view this]
new model is not different in essence from that which we have been discussing 3
In both cases we are stating that E(x) belongs to a subspace of R", and indecd gl '
by reparametrization we can throw the new model into the form of the previous§ '
one. Suppose, for instance, that rank H = g. (Ifrank H < g this simply mean{ i
that some of the conditions are redundant, being consequences of the rest, and}

we may simply discard these.) By adjoining p—q suitable chosen rows to thé
matrix H we can construct a non-singular p x p matrix K with K’ = (H', H*}

say. Now let y = Kp. The side conditions on f are, in terms of y, ]

3101

Nn=yr=..= Y =0
Now we have
E(x) = AK™'y = By, say, 3
= (B,B,) [v‘”], 1
@ :
where Y = (y1, 2, .. . » 7,) and y® = (Ygw1se -2 75) . .‘
Thus E(x) = B,y +B,y® = B,y?, when y'") = 0. In this expression for |
E(x), the side conditions are incorporated, there are no conditions on ' and
the model is as previously.
In practice, while it would be possible to treat the problem of least-squares §
estimation with side conditions in the way just described, to determine § and

then § = K~ !4, this would be an unnatural approach. The problem we have, Ji
is that of minimizing the sum of squares ‘

(x—AB)(x—AB)

subject to the side conditions HB = 0, since it is natural to require that our §§
least-squares estimates should satisfy the conditions which we know to be §
satisfied by the parameters being estimated. The obvious way of going about
this is to introduce Lagrange multipliers and derive the following equations
satisfied by the restricted least-squares estimate 5. In these equations, 1 is a
g-vector of Lagrange multipliers, A, 45, ..., 4,

.
A'AB+HL = A'x,
Hpf =0,

g
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The vector A here obviously depends in general on x and so we may regard it as

a random vector. o
We now consider the question of what we can say about the distribution of

the restricted least-squares estimate B when we retain the standard assqu(;
tions regarding the distribution of the error vector &, name}y that E(e:) = f
and var ¢ = ¢°I, and when E(x) = Ap where HB = 0. Thls question lls o
interest per se and it is also relevant in a problem which will concern us ater.

rank A = p,rank H = ¢

The first case which we shall discuss is that in which there_ areno identifiability
difficulties regarding B (rank A = p) and in which no restrictions are redundant
(rank H = ¢). In this case A’A is positive definite; and the matrix

A'A H’]
H O

is non-singular (see Appendix A). Moreover, if its inverse, similarly partitioned,

is [P Q]
Q R
then [f]=[PA'x :\
: A QA'x
Also Ez[Bl= PA’AB]=[B:\,
A QA'A 0

since PAA+QH =1

and QA'A+RH =0,

so that PA'Af = B—QHB = 5,
and QAAp= —RHB =0,
as Hf = 0.

Furthermore vary[ §] = o*[PA'AP PA’AQ]
A Q'A’AP QAAQ

- =o*P 0],
0 -

since in addition to the previous matrix equations we haveA HP = 0 and
HQ = I, and therefore PA'AP = QHP = P, etc. (see Appendix A).

To sum up: With the linear model
x = Af+e,

where Hf = 0, E(e) = 0 and vare = o2l, rank A = p apd rank H.= q, tlﬁe
restricted least-squares estimate B has mean §§ and variance matrix P, the
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leading p x p sub-matrix of the inverse of [A’A H’].
H 0

It is clear from the argument at the beginning of section 3.10 which repara-3§
metrizes in terms of y that
1

oy AR k- AD)

is in this case an unbiased estimator of a2,

rank A < p,rank H = g

As we have seen, when rank A < p the parameter § is not identifiable and the!
domain of B is partitioned into equivalence classes of parameters. Any two}
parameters in the same equivalence class yield the same value for E(x), and we]
cannot hope to distinguish between these as a result of observation. Indeed inj
this linear situation it is not difficult to identify these equivalence classes. Al
parameters f in the null space of A, that is all Bs such that Af = Oare in the
same equivalence class and this is a linear subspace of R?. Any equivalenccii |
class is a ‘hyperplane parallel to this subspace’. -

One method of proceeding in this case is to introduce restrictions on fin 3&¥
order to focus attention on exactly one member of each equivalence class and
to behave as if the true parameter satisfied these restrictions. To take a trivial
illustration, suppose that our model specifies that for i = 1,2,...,n
E(x;)) = Bi+Ba,

ie,that E(x)= [1 1 [Bljl.
1116

11
All parameters § such that f; + f; has a given value k, say, are equivalent If}
now we impose the restriction that f; = B, this restriction serves to pick out J

$k
equivalenée class defined by 8, + B, = k. Then we may proceed to estimate §
as if it satisfied the restriction 8, = f, and so estimate the equivalence class
to which it belongs. '

In general when A has order nx pand rank r < p it is possible to introduce
p—r linear restrictions which serve, as in the illustration, to identify a parti-
cular member of each equivalence class. More specifically, there exists a
(p—r) x p matrix L of rank (p—r) such that the equations
AB =k,

Lg=20

exactly one member of each equivalence class ~ the member [%k] of the
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have exactly one solution. An obvious necessary and sufficient condition for
these equations to have 2 unique solution is that

rank| A | =D,
L

and again obviously we can find many matrices L of ordé.r (p——.r) x p which
satisfy this condition. Since the conditions Lf = 0 serve to identify B we shall

refer to them as identifiability restraints. ‘ o
It often happens in practice that the natural or symmetric specification of
E(x) in a linear model takes the following form:

E(x) = Ap where Hf = 0;rank A =1 < pand rank H = ¢.

Moreover some of the side conditions HB = 0 serve to identify § and the

remainder are ‘genuine’ restrictions on B. In fact there exists 2 sub-matrix of

H, H, say, of order (p—1) X p such that [A ] has rank p. Again in theory this
H,

specification of the linear model presents no essentially new difficulty for by

a reparametrization we can clearly revert to the original form of the rnqdel
which we have discussed in detail. However we now consider the practical

algebra corresponding to this specification. N
We may suppose without any loss of generality that H may be partitioned

into | Hy |

i)
where H, has p—r rows and the equations H,§ = 0 are identifiability con-
straints, so that [A :\ has rank p, and A'A+H\H, is a px p positive definite

H,
matrix. As before, the restricted least-squares estimate B satisfies the equations

AA HATB) = A’x].

H 0 1l4 0
But now A’A is singular and some modification of the argu'ment of section
38.1 is necessary. This modification is relatively simple. For since HB = 0,50

that in particular H, B = 0, an equivalent set of equations is

e ST

and the matrix A’A+H{ H, is positive definite, so that we now havg a set of
equations similar in structure to those of section 3.8.1; and the matrix on the
left hand side is non-singular. If now we set

A'A+H H, H’]"=[P Q]
[H 0 Q R

Least Squares with Side Conditions
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then we have, as before

B = PA'x
and 4= QAx.

The matrix relationships used to establish the results of section 3.8.1 were

PA'A+QH = 1
QA’A+RH = 0
HP =0
HQ =1

and these are now replaced by the following

P(AA+H H,)+QH = I
Q(A'A+H;H)+RH =0
HP = 0
HQ =1 34

Frgm equation 3.3awe havein particular the fact that PHj = 0,s0 equation
3.1ais equivalent to equation 3.1and the only essential difference between|
the second and first set of equations is the term Q'H, H, in equation 3.2a. AsgR
is easily verified the only difference that this makes to the deductions of section]
3.8.1 is that now

var A = —R—-QH H,Q;
everything else remains unaltered. Since HQ = land p—r < g it follows that

(H,Q)(H:Q) = [Ip—, 0]
0 0

so the only adjustments required by the non-identifiability of B are that

(a) we replace A'A by A'A+ H{H,,

(b) var A becomes —R— [I p—r 0] instead of, as previously —R.
0 0

While we are not particularly interested in the random variable A in the
meantime, these results concerning which emerge here in a natural way, wil
be used in a subsequent problem. :

Discussion

There are many variations on the least-squares theme and there are various
questions which we have left unanswered. The method is an extremely useful
one and it is often applied even when the assumptions of the Gauss-Markov
theorem, which justifies it in terms of minimum-variance unbiasedness, ate
not satisfied. It therefore becomes natural to inquire how the properties of the
method are affected by changes in the assumptions regarding the error vector
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etc. Much of econometrics is concerned with this kind of question and for a
very full discussion of such points the reader is referred to Malinvaud (1966).

Examples

Assume that observations Xy, Xz, - +» x, can be expressed in the form

x; = fot+Braite (i=12....m

where ay, Gs, - - - » Gy are known values of a concomitant variable and the &s
are uncorrelated errors with common variance o2, Verify that Bo and 8, are
both estimable if and only if the a;s are not all equal and confirm the intuitive
acceptability of this result by imagining a scatter diagram of the points
(a;, x;). Show that, when the g;s are not all equal, least-squares estimates Po
and j, are given by

B _ Z(ai"a)xi
L Y (a,—ay"’
Bo = x—ap;.

Prove directly from the first expression that var By = 0¥y (@~ 7)?. Show that
%and B, have zero covariance and deduce that

(@) cov (Bo, B1) = —@ var By

(b) var fo = o? 1+————Ei——-]
o n Z (a;— a)* '
Verify these results by writing the model in the matrix notation
x = Af+e
and using the general results of chapter 3.
Observations X, Xz, - « + » X €30 be expressed in the form
X = ﬁ0+ﬂlai+ﬂzai2+6i (i=1,2....m
where the a;s are values of a concomitant variable and the es are uncorrelated
errors with common variance. Establish that § = (Bo, Prs B,)is identifiable if
and only if there are at least three different values among ., Agy e s On
The model x; = Bo+Bi1ait& (G=1,2,....,ms
may be expressed in the form
Bo+Bs a+pBy(a—a)+eE
a+Bila—@)+&, $ay.

Show that this reparametrization in terms of « and f; rather than fo and f;
facilitates calculation of least-squares estimates.

il

Xi

1l

Examples




34

3.5

3.6

66

Verify that, in general, the model
X = Af+¢
can always, by reparametrization, be expressed in the form
x = By+e,
where B is a matrix whose columns are orthogonal, and that the least-squares
estimate of y is easily calculated.
Observations x;;(i = 1,2,...,r;j = 1,2,..., n), are such that

Xij = [.I+Ti+8,-j,

where the es are uncorrelated errors with a common variance. Verify that

M Ty Tay - -, T, are not identifiable, but that they are when the restriction

T +724 ... +7, = 0 is imposed. Show that the least-squares estimates, |

subject to this restriction are

=N

f
x
I
[

xU,

o
It
x
1
>

L
where x;. = —inj (G=12,...,n.

n &
i

Aerial observations x,, x,, X3, X, are made of the angles 6, 8,, 85,6, of a
quadrilateral on the ground. If these observations are subject to independent
errors with zero means and common variance ¢2, determine least-squares
estimates of the §s, and obtain an unbiased estimate of g2,

Suppose that the quadrilateral is known to be a parallelogram with 8, = 4,
and 6, = 6,. What then are the least-squares estimate of its angles, and how
would you estimate g2?

A chemical compound can be produced by a certain process without the help -

of a catalyst, but it is hoped that the yield will be increased if a catalyst is
present. To investigate this, five identical containers are used in the following
way.

Container Treatment Yield
1 No catalyst Xy
2 Catalyst A at strength a, X
3 Catalyst A at strength a, X3
4 Catalyst B at strength a, X4
5 Catalyst B at strength 2a, Xs

The Method of Least Squares

Assuming that regression of yield on strength is linear for each catalyst, obt:am
least-squares estimates of the ‘unaided’ effect and of the two regression
coefficients. . ' -

Derive the variance matrix of these estimators (making the usual assump
tions about errors) and deduce that, for given a,, thg léast-square‘:s‘ estimator
of the difference of regression coefficients has minimum variance when

a, = aj.
37 A deterministic process Yo, Y1, .« s Yn is governed by the relation
Vie1 = aY; (i=01,...,n—1),
where a is a known constant. The y;s cannot be observed without error and
observations Xg, X1, - - - » X, are such that
x, = y+e (=0, 1,...,0)
where the g;s are uncorrelated errors with common variance. Determine least-
squares estimates of yo, Y1, « + s Y _ . ,
If a were unknown, how then would you estimate Yo, Y1, e V!
In each case obtain an unbiased estimate of the error variance.
38 In example 3.4, take r = 3 and verify directly the general results of section
3.102.
67 Examples
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4 The Method of Maximum

4.1

Likelihood

The likelihood function

The justification of the method of least squares requires no knowledge of the
form of the distribution of the error vector apart from its mean and variance §
matrix, and the method can be applied without this further knowledge. The
method of maximum likelihoed, on the other hand, is applicable mainly in ¥

situations where the true distribution on the sample space is known apart from

the values of a finite number of unknown real parameters. So maximum 3

likelihood is usually applied when the family of possible distributions on the
sample space can be labelled by a parameter § taking values in a finite-
dimensional Euclidean space. In addition, its application is generally restricted

to the case where this family {Py:0 € @} (© a subset of R, say) possesses ' §

density functions {p,; 0 € ®} with respect to some ‘natural’ measure on the
sample space, such as counting measure if the sample space is discrete or
Lebesgue measure when it is not; in the discrete case p(x) is ‘the probability
of the point x when 0 is the true parameter’; in the continuous case p(x) is
‘the probability density at x when 4 is the true parameter’.

It is convenient now to change our notation and write p(x, 8) instead of

pe(x); and we make a distinction between the function p(:, 6) which is a
density function on the sample space, and the function p(x, ) which is a
function on the parameter space. The latter function, p(x,-), is called the
likelihood function corresponding to the observation x, or simply the likelihood
function. It expresses the plausibilities of different parameters after we have
observed x, in the absence of any other information we may have about these
different values. (This last sentence might well be the subject of some contro-
versy, but we shall return to this point later.)

The method of maximum likelihood has a strong intuitive appeal and
according to it, we estimate the true parameter 6 by any parameter which
maximizes the likelihood function p(x, +); such a parameter belongs to the
set most plausible after we have observed x. Often there is a unique maximizing
parameter which is the most plausible and this is then the maximum-likelihood
estimate.

Definition

A maximum-likelihood estimate 8(x) is any element of ® such that

68 The Method of Maximum Likelihood

413

69 The Likelihood Function

pix, 0(x)} = rrelf.ex p(x, 6).

Of course it is possible, if, for instance, © is an open set, that no maximum-
likelihood estimate exists. However in practice this does not often cause

trouble. o '
Again formally at this stage we make the distinction between the estimate

f(x)and the estimator g, but we shall not maintain this distinctjon consisten.tly,
leaving the context to make it clear whether we are thinking off(x)asa function
or as a particular value of 2 function.

Example

The results of n independent trials in each of which the probability of success
is @ are x = (X1, Xg - - - » Xn), Where as usual each x; is either 0 or 1. Find the

maximum-likelihood estimate of 0. . o
The likelihood function, defined on the interval (0, 1), 1s given by

p(x, 0) = 67(1 — gy
and its maximum occurs at

R > number of successes
b(x) = n  number of trials

So in this case the maximum-likelihood estimator coincides with the M.V.U.E.

Example

Let x = (X1, X2, .-+ » Xs) bE 8 random sample- from an'N (1 0% distribuztxon
with ¢ and ¢? unknown. Find maximum likelihood estxmatfs of u e}nd o (;lr,
equivalently, the maximum likelihood estimate of 6 = (u,'a ). In this case the
likelihood function, defined for all real y and all g2 > 0,1is

1 1
p(x’ H, 62) = Wexp[‘ﬁi(xi-#)z]~ ‘

Maximizing p, which is non-negative, is equivalent to maximizing log p and

1 2
log p{x, u, 0%) = constant—n log iy Z (o6, — 1)*

We find the maximizing values by the standard method for maximizing a

function of two variables, namely equating partial derivatives to zero.
oo 1
This gives p Z () =0

1
and -E+~§Z(X{—ﬂ)z =\,
[

]
i 0
ik
1
[}
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equations which have the unique solution

.o 1 21
u—,\——-—’;Zx,- and 02=22(xi——i)2.

It is not difficult to verify that these values of 4 and ¢ yield an absolute (not

only a local) maximum of the log-likelihood, so that they are maximum- §

likelihood estimates.

Calculation of maximum-likelihood estimates

In these two exampl§s it was possible to find relatively simple expressions in g
closed form for maximum-likelihood estimates, but often this is not possible E

and ‘numeri.cal methods are necessary. It is usually possible to assume that §
maxu'fmm-hkellhood estimates emerge as a solution of the ‘likelihood ]
equations’, namely :

0
Eélogp(x,O):O, i=12...,5.

However, these equations often have to be solved numerically.

A standard Fnethoc.l of solving the likelihood equations is Newton’s method §
or an adaptation of it. Symbolically the equations we have to solve may be. §

written
Dyl(x,8) = 0,
where I(x, 8) = log p(x, §) and D, is the vector differential operator whose i

z:th component is. 8/80;. By exploiting special features of the situation under '
investigation, as in the example following this section, we can often obtain a‘“

good initial approximation 8 to the solution 8 of these equations. Then we

expand by Taylor’s theorem as far as terms of first order in 66 to obtain
0 = Dy l(x, B) = Dy I(x, 0+ {DF I(x, 6} (B -6,

where D? is the matrix operator

az
[69,~ 06 ,]'

It follows from this that
0 ~ 9(0)__{1)3 I(x, 0(0))}- lDo I, 0(0)),

and the right hand side of this equation is a new approximation 6" to the
maximum-likelihood estimate 8.

Now we repeat this process, using 6'*) instead of 6!, to obtain a new
apprpximation 82 and so on. Thus we establish an iterative procedure for
obta;n(ijng a sequence (™) which usually converges to f. This is Newton's
method.

The Method of Maximum Likelihood
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The laborious aspect of this iterative procedure is the inversion of the
matrix D? I(, 6©) at the ith stage. If our initial approximation 8 is good,
then D2 I(x, 8'®) will be near D? I(x, 69) in non-pathological conditions, s0
that we can often use the former matrix at each stage of the procedure and so
avoid the necessity for a new matrix inversion at every stage. This modified
procedure leads to a new sequence of approximations to B, a sequence which
usually converges to B, though possibly more slowly than the sequence 6™,

A further modification sometimes reduces the total amount of computation
even further. There is sometimes good reason to suppose that the matrix
D2 I(x, 0©) will be relatively close to its expected value Eg” {D? 1(x,68)};
close enough, that is, to ensure that a sequence of approximations to 8, based
on the use of this expected value rather than on D3 l(x, 6®) itself, will still
converge to #. Now it often happens that terms awkward to calculate appear
in D2 I(x, 69) but not in its expected value. So again it is sometimes possible
to reduce total calculation by using E® {D? 1(x,6)} in place of D% I{(x, 6).

We recall that E¢® {D3 I(x, 0®)} is simply, in most instances, — B4 where
B, is the information matrix (see section 2.13). It follows that the fully modified
iterative procedure is defined as follows:

g+ = g0+ By { Dy 1(x, 6™},

where 89 is an initial approximation to 8, usually obtained by exploiting
special statistical features of the problem involved.

Example

Suppose that it may be assumed that the probability 7(s) that an individual
responds to the level 5 of a stimulus can be expressed, at least approximately,
in the form

(s~ n)le

= o =H) = — -4
n(s) = Q( - )—\/(Zn) J e"* dz,

an assumption which may appear somewhat drastic, but which in fact turns
out to be valid in many circumstances. The level s; of the stimulus is applied
to n; individuals (i = 1,2,...,7) and the numbers m; (i=1,2,...,7) of
responses at the different levels are observed. Determine maximum-likelihood
estimates of p and 0.

In this particular case we have, in our general notation,

6 = (10

x = (Mg, My, .o 1)
and p(x,0) = ﬁ (:;) {n(si)}m‘{l-—n(si)}”‘*"'t,
i=1 \M

assuming, of course, that individuals respond independently of one another.

Calculation of Maximum-Likelihood Estimates
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Hence, writing 7, in place of n(s;) for symmetry of notation, we have

I(x, 0) = constant+ )" {m; log m;+(n;—m;) log (1 -7},

and the likelihood equations, Dy I(x, ) = 0, are

a m;—n;m; O

—l{x, 6) = V=

5l0=) i =
m;— ;1 OT;

0
and —Il(x,0)= ) ——————— =
do (x: 6) Zni(l—ni)ao 0

It will be appreciated that these equations are not susceptible to methods of

solution which are other than numerical, and our first problem is to obtain °

initial approximations s, and g, to their solution.

® is a monotonic increasing function. Let ®~ ! denote the inverse function

defined on (0, 1). If we knew the ms, then when we plotted the points

(s;, ® {m;)), according to our assumption regarding 7, these points would li¢ |

on the straight line

)
& (n) = pat

Of course we do not know the m;s but we do have estimates of them since
my/n; is an estimate of (i = 1,2, ..., 1) Consequently if we plot the points
(s, ® ! (my/n;) ), and if our assumption regarding = is justified, these points
should be scattered around a straight line. Plotting these points therefore gives
us at the same time a check on the validity of our assumption about = (if they
are obviously non-linear the assumption is not justified), and a means of
obtaining initial approximations to the solution of the likelihood equations.
For if we fit a straight line to this set of points, the parameters of the fitted line
yield estimates of the true parameters u and o, estimates which approximate
to the maximum-likelihood estimates, the solution of the likelihood equations,

We now illustrate the point of replacing DZ I(x, 6) by its expected value. In
our example a typical element of the former matrix is

62

'a—;'i l(xa 0)9

which is rather a complicated expression. Note however that all but one of the
terms which arise under the summation sign when we differentiate 8/(x, 6)/0u

with respect to p, contain as a factor m;—n;;, whose expectation is zero. It -

follows that
& —n,  [om\?
Eyl — l(x,0) | = _—
0[6/12 & )jl Zn:(l"ni)<a#) ’
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and similarly that the information matrix B, is given by

n; on,\? n, on;om
B, = i o M dm o
8 Zni(l—ni)<a#> Zni(l—-ni) o 0o

i

Y e Tale)
n;(1—n;) 6u Oo n;(1—n)\ 0o /-

i i

With our assumption regarding the form of m; we have

ST Om ST (ATH
¢<a>’ o o ¢(a>’

d
where ¢(y) = py O (y).

1
T oo

The calculations involved in the iterative procedure for evaluating /i and
& are still not trivial, but they are not prohibitive. For further details of the
organization of these calculations, and for numerical examples, the reader
may refer to Finney (1947); this is an example of an important practical
technique called probit analysis.

Optimal properties of maximum-likelihood estimators

The Gauss-Markov theorem provides a justification for the method of least-
squares in terms of the concept of minimum-variance unbiasedness, and it is
natural to inquire whether a similar justification for the method of maximum
likelihood can be found. Unfortunately it is not generally true that maximum-
likelihood estimators are unbiased ; for instance if Xy, X35+ -+ 2 Xy 15 @ random
sample from an N (4, ¢%) distribution with z and o2 unknown, the maximum-
likelihood estimator of § = (u, 6?) is (X, 5%)

1
where 5% = ;Z(xi—x)z:

and while it is true that Eo(X) = p, for all , it is not true that Ey(s®) = o*.
In fact Eo(s?) = (n—1)n~'6?, for all 8. (Of course whether we use this as a
criticism of the method of maximum likelihood or as a criticism of the concept
of unbiasedness is a moot point.)

We can make one or two fairly obvious statements which provide a very
partial justification of the method.

Firstly in a ‘regular’ situation where there exists an unbiased estimator
whose variance attains the Cramér—Rao lower bound, the maximum-likeli-
hood estimator coincides with this. For then (section 2.10.1) 3 log p(x, 6)/06
can be expressed in the form a(0){f(x)—6}, and the only solution of the
likelihood equation d log p(x, 8)/06 = 0 is 8 = B(x ), which gives an absolute
maximum of log p(x,6) and therefore f(x) is the maximum-likelihood
estimate.
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Secondly it is often possible to show that a maximum-likelihood estimator |
has high efficiency (section 2.11) in the Fisherian sense. This of course provides

a justification only in particular cases.

Thirdly we can say that the maximum-likelihood estimator is a function of ;
a minimal-sufficient statistic. This follows directly from the factorization
theorem (section 2.3.3) and it means that the maximum-likelihood estimator

depends only on relevant information contained in an observation. It does not
mean necessarily that it makes the ‘best use’ of this information according to

some specified definition of ‘best use’. The main justification of the method
of maximum likelihood is a ‘large-sample’ one, which shows that when an ;
observation provides lots of information about an unknown parameter, the |
method utilizes essentially all of this information. We expand this rather

vague statement in the following sections.

Large-sample properties

When we talk about a large sample we mean that the observation x takes the
form x = (x;, Xz, . . - » X,)» where n is large, and the x;s are independent and
identically distributed.

In thiscase p(x,8) = [] p*(x: O)
i=1

where p*(+, 8) is the density function, corresponding to the parameter value f;

on the space of a ‘single observation’. :
Also I(x,0) = log p(x,6) = ). log p*(x; 6),
: i=1

regarded as a random variable, is the sum of the independent identically
distributed random variables log p*(x;, (i = 1,2,.. ., n).

Now let us fix attention on one particular distribution on the sample space,
say that corresponding to the parameter 8o, which we will think of as the true
parameter. For any fixed 8, l{x, 0) is a random variable whose distribution is
determined by the ‘true’ distribution on the sample space.

Let z(0) = Eo[%l(x, 6):‘ = Eo{log p*{x;, 0)},

where the subscript on the expectation operator is used to emphasize the fact
that we are taking expectations relative to the distribution corresponding to &,

This function z(6) has a property which is, in a sense, the key to the study of
large-sample properties of maximum-likelihood estimators: z(6) attains its
maximum value at 0, and if distributions on the sample space corresponding to
different parameters are essentially different, then for no other 8 is z(0) equal to
2(8,). This important result is a particular case of the following general result
derived from Jensen's inequality.
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Theorem

Let q and r be density functions of two different probability distributions on the
same probability space Y of points , these distributions being different in the
sense that there exists a set of positive g-probability on which q(y} # r(y); and
let C be any continuous convex function of a non-negative variable.

Then E,,[C(%)] > C(),

with strict inequality if C is strictly convex.

Proof. By Jensen’s inequality we have

w[e(()]> =)

and the inequality is strict if C is strictly convex, since r/q is not constant with
g-probability 1 by assumption.
This simple proof is now completed by the remark that

Eq<£> = f f(—qu( y)dy, symbolically

q v4(y)
= [ ray=1
Y

and so E{C(é)} > C(1).
In the above theorem, let C = —log, let Y be the space of a ‘single observation’
and let g = p*(+, 6o), 7 = p*(+, 0)-

o p*(-, 0)

E,| —log=—"+|> —logl =0

This gives 90[ og 7 0) og

ie. z(Bo)—z(0) =0, or z(6o) = 2(0),

and the inequality is strict if the distributions corresponding to 8, and 0 are
essentially different.

So far we have assumed no structure on the parameter space 0. Typically
this space will have a mathematical structure; in particular, if it is a Euclidean
space, it has a metric, and then it is usually the case that when 8 is near 8,
2(8y)—z(0) is small and when 9 is far away from 8y, z(f) is considerably
larger than z(6).

Also in the large sample case the law of large numbers ensures that when
n is large, n” ! 1(x, 6) is, for most x and each particular 6, near z(f). Suppose
that we assume sufficient regularity to enable us to demonstrate that, for large
n and most x, n~* I(x, 8) is uniformly (with respect to 6) near z(6). Then the

Large-Sample Properties
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following picture emerges for the case where 0 is a real parameter, a case of
sufficient generality to illustrate the general Case also.

7T
SN
// 5

s 6o

Figure 3 Proximity of the graphs of z(8) (unbroken line) and ll(x, é)
’ n

(broken line) ensures that B is near 8,

In Figure 3, the unbroken curve is the graph of z and the dotted curve is the |

graph of n™ ! I(x, 6) for a typical x. The fact that z assumes its maximum value

at f,, and that n™* I(x, 0) is uniformly near z{(f) ensures that n~ ' I(x,9) !

assumes its maximum value at a point near 6, that is, B(x) is near 6,

Consistency

In section 4.4 we have outlined the ideas underlying a proof of the fact that the
method of maximum likelihood has a property called consistency, defined as
follows.

Definition

Let (8,) be a sequence of estimators of a parameter 0 belonging to a metric space

@. This sequence is said to be weakly consistent if 8, tends in 6-probability to g,
strongly consistent if 8, converges with G-probability one to 8, for all G € ©.

The reader who is unfamiliar with general metric spaces may think of the
parameter space © as being the real line, without losing anything essential
from the statistical idea here. This idea arises from the following consideration:

Suppose that we continue repeating an experiment which, we feel, is in some
sense providing information about an unknown real parameter 6 involved
in a probabilistic model of the experiment. If the repetitions are independent,
then, as their number increases, we feel that we ought to be obtaining more
and more information about 8; that, if we are estimating 0, our estimates
should get closer and closer to the true value, whatever this may be; and that
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finally, when the number of repetitions is very, very large, we ought to be
fairly certain about what the true value of the parameter is.

Precise mathematical content is given to this notion by the statement that
consistent estimation should be possible in the circumstances described. It
then becomes important to demonstrate that any method of estimation which
we employ does have this property of consistency.

Now if (x,) is a sequence of random variables whose joint distributions
depend on an unknown parameter 8 in a metric space ©®, we may define a
sequence @, of maximum-likelihood estimators of g, b, being the maximum-
likelihood estimator based on Xy, Xz, - -« s Xn: Section 4.4 outlines the main
ideas underlying a proof of the fact that if the x,s are independent and identi-
cally distributed, the sequence (8,) is consistent: weakly consistent if a weak
law of large numbers is employed; strongly consistent if a strong law isused. Of
course analytic details are required and regularity conditions must be intro-
duced, for a complete proof, which is quite complicated. The reader is referred
to. Wald (1949) for such a complete proof. ‘

Large-sample efficiency

The main justification of the method of maximum likelihood in terms of the
criterion of minimum-variance unbiasedness is that it is possible to show that
for large samples, subject to regularity conditions, maximum-likelihood
estimators are nearly unbiased and have variances nearly equal to the Cramér-
Rao lower bound. Again a full proof of this result is hedged around with
analytic details and regularity conditions and we content ourselves with a
heuristic argument. We consider the case where there is an unknown real
parameter 6, a case of sufficient generality to illustrate the probabilistic content
of the argument.

Suppose then that (x,) is 2 sequence of independent identically distributed
random variables, the distribution of each being known apart from the value
of a single real parameter #; and let 8, be the maximum-likelihood estimator
(which we assume unique) of 6 derived from x;, Xy o v s Xy WE shall now
assume that n is large and we shall omit the subscript n for typographical
brevity. We assume also that B emerges as a solution of the likelihood equation

Dgl(x,6) = 0,
where  x = (X1s X2, « + + s Xuh
I(x, 0) = log p(x, 0) = Y, log p*(x 0)
i=1
and D, is the differential operator /08, as before.

Section 4.4 tells us that with g-probability near 1, § is near 6. We therefore
have

0 = D,l(x, 8) = Dyl(x, )+ —0)DF i(x, 8)+R(x, 6, ),

Large-Sample Efficiency
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where R(x, 8, 0) is a remainder term involving (8 —6)?, which may be shown .
to be of smaller order than the first-order term, (A—60) D3 (x, 0), if regularity
conditions are satisfied. We can therefore say that, with f-probability near 1, ]

Caa __Dgl(x, )]
08 = Dil{(x, )
o nTED,I(x, 6)
or /n(@-6) ~ DRI )
1

Now 7 Dyl(x, 6)

1 n
> Dy log p*(xi ).

Jr

and each random variable in the sum on the right hand side has zero mean ‘
and variance i,, Fisher’s measure of information from a single observation |
(section 2.9). Consequently by the central limit theorem, n~*Dyl(x, 0) is

approximately N (0, ig).

1 1%
Moreover ;D%l (x,6) = - Z D3 log p*(x;, 6)

i=1

and, by Lemma 2.11.2,
Eg{ — D2 log p*(x;, 0)} = ip-

Therefore, by a law of large numbers, —n™ ' D I(x, 6) is approximately equal
to i. :
It follows that /n(8—6) is approximately iy 'x(an N(0,is) random
variable), so that f is approximately N {6, (nig)™ '}, ie., N (6, Ig 1ywhere I; !is
the inverse of Fisher’s measure of information from xj, X5, ..., X,, or the
Cramér-Rao lower bound for the variance of an unbiased estimator of 6
based on Xy, Xp, . . s Xpe

So we have ‘proved’ that maximum-likelihood estimators are efficient for
large samples and in addition that 8 is approximately normally distributed,
in this case where there is a single unknown real parameter. For a complete
proof of this result the reader is referred to Cramér (1946), p. 500.

This property generalizes to the case where @ is a vector-valued parameter.
The basic results used in the above proof are:

(a) Taylor’s theorem in the expansion of Dpl(x, B);
(b) a central limit theorem applied to n™*D I(x, 6);
(c) a law of large numbers applied to n™* D? l{x, 6).

Each of these results has a multivariate version and the vector-parameter
argument is simply a straight generalization of that above, yielding the result
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that in this case, for large samples, 8 is approximately N (6, (nBg)~ ') where
B, is the information matrix (section 2.12) for a single observation.

Restricted maximum-likelihood estimates

On certain occasions, when a family of distributions on a sample space is
labelled by a vector-valued parameter 9, we have additional knowledge about
the true parameter and we, know that it satisfies certain restrictions. Then the
parameter space © is expressed in the form

® = {0:0eRh0) = 0},

where h(0) = [y (6), h2 (), ..., by ®]isa vector-vajued function mapping
R into R”. Of course we wish an estimate of the true parameter to belong to ®
so that, as far as the method of maximum likelihood is concerned, we wish a
restricted maximum-likelihood estimate, that is an estimate which maximizes
the likelihood function subject to the restriction h(6) = 0.

As far as the theory of such restricted maximum-likelihood estimates is con-
cerned, the natural mathematical approach isto reduce this case to that studied
in section 4.6.1 by an initial re-parametrization. We “fill out’ the restricting
functions hy, hg, . .., hytoaset by, ha, ooy B Bos 1y« -« s by in such a way that
the function h* = (hy, ko, - . ., hy) is a one-to-one function from R® onto itself.

Then by setting  ¢; = BBy, 05, ..-,00 (=12...,9)

we obtain a new labelling of the family of possible distributions by the para-
meter ¢ = 0,0,...,0, 410 ., ¢,), whose first r components we may
ignore, since they are all zero. Thus from a theoretical point of view this new
problem is essentially the same as that of estimating an unrestricted parameter
belonging to R*"" and the properties established for the method of maximum
likelihood in the latter case, asymptotic minimum-variance unbiasedness etc.,
will apply to restricted estimates also. Again only the bones of a rigorous
argument are given here and these would require to be supplemented by

regularity conditions and more details to complete the discussion.

The natural practical approach to the problem of finding restricted maximum
likelihood estimates is a direct attack by the method of Lagrange multipliers,
which leads to the restricted likelihood equations
Dyl{x, 0)~Hed = 0
h(9) = 0,

where 4 = (4, Az, . - - » &) is a column-vector of Lagrange multipliers and
H, is the s x r matrix of partial derivatives dh;(6)/06;. With sufficient regularity,
the restricted maximum-likelihood estimate g(x) emerges as a solution of
these equations along with an appropriate Lagrange multiplier Z(x).

1t is not possible to say much in general about this estimate 6 (x). However
if we know that, with 8-probability near'1, ¢ is very near 6, then the above
restricted likelihood equations are approximately linear and by the same
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kx‘nd'of grgument as in section 4.6.1 we can obtain approximations to the
dxst'nbutwn of 8. In particular, if we are dealing with a large sample then,
su.bject to what is mild regularity from a practical point of view, it is true that,
gis very probably very near the true parameter 6 - the argumen{ of section 4.4
carries over with little modification, as the reader may verify. Let us su oée
then that we are dealing with a sample of n, where n is large, somzhat

x = (X4, X2, . . - » X,) and the x;s are independent and identically distributed.
We have Dyl(x,8)—Hyl =0
h(@) = 0,

and using Taylor’s theorem to linearize about the t & i
: ] rue parameter 8 (wh
recall satisfies h(8) = 0), we have approximately P (whichve

Dyl(x, 0)+{D21(x, 0} {§—0}—Hl = 0
Hy(8—8) = 0.

The fact that the term Hy/ can simply be replaced by H,/ requires some
explapatxon. This is because when @ is near 8, it is also near the element §of R®
at which l'(x, 6) takes its absolute maximum, so that A is relatively small; hence
when Hg is expanded about 9, the first-order terms in the expansion involve
9',"9 and 4 and so are of smaller order than those which we have included
Slight manipulation of these equations yields .

L LIP
[ - D* I(x, 9)]\/11(9—9)—}-}19%1 = %DO 1(x, 6)

H;\/n(()-—e) =40,
or, in matrix notation,
1, ' 1
71) I(x,8) Hg Jné-96) | = 71),, I(x, 0)|.
n

1
Jn

We now apply'the law of large numbers to —n~1D?I(x, 0) and find, as
before, tpat this is approximately By (the information matrix for a single
observation). The central limit theorem applied to n™* Dy I(x, ) shows that

itis approximately an N (0, By) random variable. Carrying our-approximation
this one stage further shows, therefore, that approximately

Be Hg \/n (G - 0) = V4

H, 0 0

1

where Z is N(0, By).
This is virtually the same set of equations as we had when dealing with the
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linear model subject to restrictions — which is not surprising since we arrived
at this point by linearizing a non-linear set of equations. We can therefore
carry over the results of section 3.10, simply by replacing A’A by Be and H by
H, and we find that, when By has rank s,

Jn(@-0

1/1
N

is approximately normally distributed with zero mean and variance matrix
\:P,, 0 ] where [Be Ho]“ = [P,, Qe]‘

0 —Rg Hy 0 Qs R
Non-identifiability and singularity of the information matrix

There is a connexion between non-identifiability of a vector-valued parameter
9 and singularity of the information matrix B, which becomes clearer if we
examine the function z(6) introduced in section 4.4.

Suppose that a family of distributions is labelled by a parameter @ which
ranges over an s-dimensional subset ® of RY, that is, ©® contains an s-dimen-
sional rectangle. Let 6o be a particular element of © and 6 a neighbouring
point, and as in section 4.4.1,

let z(6) = Eo{log p(x, O}

where p(-, 6) is the density function on the sample space defining the distribu-
tion corresponding to the parameter 0. Let us suppose further that there is

enough regularity in the family {p(, 0):0 € ©} of density functions to permit
the following operations, which we have already encountered.

~ 2(6) = Eo{log p(x, 0}

I

Eo{log p(x, 80)+ [De 108 p(x, 80)) (0—00)+
+(6—6,) [ D3 log p(x, 0,)] (8 —0)} + terms of third order

2(8¢)— (0—80) My, (0—0,)+ small terms,

where M, is the information matrix for x. We know from our previous study
of the function z, that if is identifiable, (that is, if different 0s corresponding
to different distributions) then z(0,) is an absolute maximum of z. This usually
means in practice that the second-order terms in the expansion of z(6) about
z(8,) are negative, that is, that My, is positive definite. Of course this is not
necessarily so. It is possible that (0 — 0o Mg, (6 —00) is zero and that higher
order terms ensure that z(8,) > z(0). However this is unusual in practice, and
usually identifiability of 6, together with the kind of regularity which permits
the expansion of z(6) indicated above, ensures that M,, is positive definite, at
least when 0, is an interior point of ©.

i
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Conversely, if M, is singular and so indefinite, this in practice usually means
that there are parameters 6 % 6, such that z(8) = z(6,) and this in turn

means that there are different parameters yielding essentially the same distri-

bution on the sample space, so that 8 is not identifiable.

It is quite clear that any formal result connecting non-ideﬁtiﬁability of 8}

and singularity of the information matrix which we might try to state would
have to be hedged around by so many conditions that its content would be
obscured. So we leave the discussion in this informal state, noting that usually

lack of identifiability of 6 implies singularity of the information matrix and
vice versa.

For the linear model we discussed the possibility (section 3.4) of non-identifi-
ability and the adjustment necessary to the technique for finding restricted
estimates in this case, A similar adjustment is often possible in the above large-
sample theory for restricted maximum-likelihood estimates in the case where
the information matrix is singular. For, as indicated in section 4.7.4, this

often means that 8 is not identifiable without restrictions. However a number
of the restrictions

RO =0 (i=12...,7

say the first 1 of these, are just enough to ensure identifiability (as in the linear
case); and this usually ensures that the matrix Bg+ H 4 H), is positive definite, .

where H,4 is the leading s x ¢t submatrix of H,. The adjustment is now similar
to that in the linear case. We replace By by By+H,,H}y wherever it appears,

and now /n(6—6) is approximately normally distributed with zero mean and
variance matrix Py, the leading s x s submatrix in

Hj 0

For further details see Silvey (1959).

Example

In an experiment for measuring the DNA content of a particular type of cell, |

there is a chance of mistaking two cells for one, so that the experimental
result may be a measurement of the DNA content of a single cell or of the
sum of the contents of two cells. From the results x = (x;, X5,..., x,) of a
large number n of independent repetitions of this experiment, it is desired to
estimate the mean and standard deviation of the DNA content of single cells.

In order that it should be possible to apply the method of maximum
likelihood to this problem it is necessary to set up a model which involves
only a finite number of unknown parameters. Now in this situation it is fairly
realistic to assume that the DNA content of a single cell is normally distributed
with unknown mean g and unknown variance ¢®. There is an unknown
probability « of mistaking two cells for one. If we further assume that when

The Method of Maximum Likelihood

two cells are mistaken for one, these two cells may be regarded as 1nc¥ependeﬁt
of one another, then measurements resulting frqm the olzserv_atlop of two cells
are normally distributed with mean 2y and variance 20%. With t?esef ass?;n;;e
tions, the probability density on the line to describe the result of a sing
replicate of the experiment is

' 1 (t—w’ 1 exp[_(t—mz]
p*(t,60) = (1—) N CXP["“E'G_:’]“"“ J20J@2n) 2x 20°

and the probability density on the sample space for n repetitions, R", 1s

p(x, 0) = EI: p* (x;: 0)-

Here § = (o, 4, o) and we have a family of distributions on thq sar.nple space
parametrizeél by a 3-vector, so that the method of maximum likelihood may
ied, i i in section 4.2.1.
e applied, in the same kind of way as m sec - ’
° Aﬁgthe‘r way of setting up a model for this example 1shless selr.lsﬂ:‘le frofr?ha;
i i i ion o
i i i t yields an illustration of the applicatl
computational point of view bu : the applit o
i i tes. So we consider it for this .
ethod of computing restricted estima . ‘ son.
I:s before we assume that the DNA content of single cells is notmally dl(sitrl2
buted, with unknown mean and variance which we now tfiex'.lotgzkt?y yt, a:cecﬁ 15
o i i nknown probability o of mistaking tw
respectively. Again there is an u g e
hat a measurement resulting
for one. However we now assume t . . ' ‘
observation of two cells is normally distributed with mean /i and vax;lancle I 12.;
so that the probability density on the line to describe the result of a sing
replicate of the experiment is now

2
1 (t—m) U o [_(t'ﬂz)]
— ot p s
R e i [l
where 6 = (&, i1, Oy, Ha, 02), @ S-vector.

Correspondingly p(x, 0) = E p*(x: 0),

and this density also involves five unknown parameters. If we are I;reliared
to make the assumption that two cells mistaken for one are independen

then pp—2uy =0

and o3—-20% =0, X
and we may consider maximizing p(x,+) subjecthFO t?ese rest'rlcet(;?lrilvsaiﬁ tt tg

ipli i f section 4.7.3. This of course 1S .
Lagrange multiplier technique of sect S active
ious i imization’, but the reader may find1

the previous ‘unrestricted maximiza b : d .
to fgllow the theory for each case through in terms of this particular example
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Examples

Let xy, X3, . oy Xy be a random sample from a distribution with density
R(x, .9) depenghng on an unknown real parameter 6. Find the maximum-
likelihood estimate of 6 in the following cases.

(a) p(+, 6) %s the density function of a Poisson distribution with mean 8;

(b) p(-, 8) is the density function of an exponential distribution ’
p(x,0) = 8™ (x> 0); ’

(c) p(-,6)is the density function of the uniform distribution on ©, 6).

In each case determine the distribution of the maximum-likelihood estimator,
F or cases (?.) and (b) verify the large sample theory of chapter 4. Show that
this theory is not applicable in case (c) and explain why.

On tpe_ Aegean island of Kalythos, the inhabitants suffer from a congenital:
eye disease whose effects become more marked with increasing age. Samples of

fifty people were taken at five different ages and th i
any peo \ g e numbers of blind people

Age 20 35 45 55 70 ‘
Number ofblind 6 17 26 37  44. :

It is conjectured that the probability of blindness a .
t a
expressed in the form ge x, P(x), can be

P(x) = {l+e &b}t

Comment on whether this hypothesis is reasonable, by constructing a suitable
graph. Estimate ¢ and 8 from the graph and then obtain maximum-likelihood

estimates. Estimate also the age at which it is just i '
¢ _ more likely th ‘
islander is blind. : Y than ot thatan

A cert‘ain type of electrical component is manufactured in a large number of
factories. The proportion p of defective components varies from factory to
factory, and over factories p has approximately a B-distribution with density

P i-pft
Bl f)

where o and f are unknown parameters. Suppose that s factories are chosen
at randor.n and that n components produced by each are inspected. Given that
m; of the inspected components of the ith factory are defective (i = 1,2 . 5)
explain in detail how to calculate maximum-likelihood estimates ot" oz’ and, ﬁ,
Show that if n = 1, « and f are not identifiable. .

Suppose that one has n pairs of measurements (xy, y{), (X2, ¥2), . - . » (X, y,,) the
2n values be.ing distributed normally and independently with variancemaz'.' The
mean of x; is &, that of y; is n; and the n pairs (&, ;) lie on a circle centre
(&, n) and radius p. It is required to estimate &, n and p. Obtain a maximum-
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likelihood solution of this problem, and elaborate the computational details.
(Camb. Dip.)

In an experiment to measure the resistance of a brystal, independent pairs of
observations (x;, y)(i = 1,2,...,1) of current x and voltage y are obtained.

These are subject to errors (g, 1,), so that

X; = Wt+e, Y=Vt

where i, and v, are the true values of current and voltage on the ith occasion
and v; = oy, o being the resistance of the crystal.

On the assumption that the errors are independently and normally distri-
buted with zero means and variances, vareé; = 0%, varm, = 03 = Aol
where .4 is- known, show that &, the maximum-likelihood estimator ofaisa

solution of the equation

a* Sxy +&(ASex— Syy) - ;LSXY =0,

1 1
Sxx=;2xi2a Syy=;Zy;2.

Show that, if ¥ p#/n tends to a limit as n — o, then & is a consistent
estimator of «.

Show that the method of maximum likelihood gives unsatisfactory results
when 2 is not assumed known. Explain why the standard theorems for
maximum-likelihood estimators do not apply to this problem. (Camb. Dip.)

1
where Sy, = ;l‘zxiyi’

A radioactive sample emits particles randomly at a rate which decays with
time, the rate being e~ after time t. The first n particles emitted are observed
at successive times ty, L, . .., Ly S€t UP equations for maximum-likelihood
estimates £ and &, and show that £ satisfies the equation

%,

—— = 1—KI,
e*n—1
1 n
where T=-) .
n

i=1
Find a simple approximation for £ when #t, is small. (Camb. Dip)

A cell contains granules which may be regarded as spheres of equal but
unknown radius r, and which may be assumed to be distributed randomly
throughout the cell. In order to estimate r, a section of the cell is observed
under a microscope and this section contains circular sections of n granules.
If the radii of these sections are Xi, Xz, .« «» *m determine the maximum-
likelihood estimate of r. What is its distribution, for large n?

Examples




4.8 L(?thx:j, X3 0o x,,-leai a random sample from the exponential distribution
with density 91? " (x > 0) and yy, y,,...,y, an independent random
s.aml-ﬂe from a distribution with density 8,¢7%" (y > 0). Find maximum.
likelihood estimates of §, and 6,. Find, directly, restricted maximum-likefi-

hood estimates subject to the condition 8, = 6 i ‘
' . 1 = 0, and verify the general t 1
of restricted estimates for this case. yHes heOl)'é
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Confidence Sets

The method of maximum likelihood is appealing because, as we have said,
in some sense a maximum-likelihood estimate is the most plausible parameter
value after an observation x has been made - it is that value of the parameter
which gives greatest probability to x. However while we may accept this, we
should be extremely reluctant to believe that a maximum-likelihood estimate
coincided with the true parameter in all circumstances, and it is natural to ask
how near the true parameter we might expect a maximum-likelihood estimate
(or indeed any estimate) to be. The very use of the phrase ‘how near’ implies
that there is a metric on the parameter space, but it is useful to think about
this question in more general terms.

We may take the point of view that, when an observation has been made,
this observation divides the parameter set into two disjoint subsets: a
‘plausible’ subset and an ‘implausible’ subset; and that what we really want
to do, rather than to fix attention on a particular parameter value as an
estimate of the true parameter, is to determine this plausible subset of para-
meter values. Then our conclusion based on an observation would be, ‘The
true parameter is in such-and-such a subset of the set of possible parameters.”
The formalization of this idea leads to the problem of set estimation.

Confidence interval

It is possibly helpful to initiate this discussion by considering a particular
example. Suppose that we have available a random sample x = (xy, X3, .. ., X»)
from a normal distribution with unknown mean x and unknown variance o
and we wish to determine a ‘plausible’ set of values of u. We may argue as
follows. .

Let 0 = (1, 0%) and let t(x, u) = /n(X—p)/s, where X = n"'} x; and
§* = (1—1)"' Y (x;,— %)*. The O-distribution of ¢(x, p) is known; it is distri-
buted as Student’s ¢t with n— 1 degrees of freedom, in statistical jargon. Hence,
without knowing what 8 is, we can find a number t, such that

Pe{—t, S tlx,p) S t,} = 1—0,

where o is a small preassigned number between 0 and 1. This may be rewritten
in the following form:

Confidence Interval
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and read as: ‘Whatever the true value of 4 may be, the probability that .
random interval ]

[f f— X+t al
—ly =y X —_
Jn *Jn

contains this true value is 1 —a.” Thus for each given x, the interval

lji'—t s X+t >
LAt s
TG

may be regarded as a ‘plausible’ set of values of 4, plausible in the sense thaf
we are (100(1 —«) per cent confident that this set contains the true paramete
\l/alue. The interval is called a confidence interval for u with confidence coefficient
—0. )
Note that as o decreases, ¢, increases, so that this 100(1 —e) per cent con '
fidence interval, corresponding to any given x, widens as o decreases. In othet
words, if we wish to have great confidence in a chosen plausible interval, wel
must choose a larger interval than is necessary if we are content to have less]
confidence in our chosen interval; and this is not surprising. 3
Note also that for fixed « and any given x, there is not a unique 100(1— ) pe :
cent confidence interval for u. There is no reason why we should not choose
two numbers ¢,, and t,, such that r,, #+ —1,,, and still have '

Po{tiy < t(x, 1) € 135} = 1 -0,

If we do so, then we are led by exactly the same argument to the 100(1 — ) per}
cent confidence interval

= s S
[x_tZa Q—n'a X=1, :/7:]

Having observed an x, we may equally well say that we are 100(1 — o) per cent
confident that the true value of yu lies in this interval.

General definition of a confidence set

This example illustrates one interpretation of what we mean by dividing a
parameter set into a subset of plausible values and a subset of implausible
v..alu.es after an observation has been taken. It may not be a completely con-
vincing interpretation, and indeed it is the subject of some criticism to which
we shall return later when discussing what is known as Bayesian inference,
However, since it has considerable practical value at least, we shall now
establish this idea in a general setting.

Confidence Sets

5.3
3.1

Our basic mathematical framework is as before —a sample space X, a family
{P,} of probability distributions on X, this family being labelled by the para-
meter § which ranges over a parameter space ®. Now suppose that {S,;x & X}
is a family of subsets of @ with the property that, for all 8,

Pe{x:85, 26} = 1—-a 5.1

The set S, is then called a confidence set for 8 with confidence coefficient 1 —a.
The practical interpretation of this is that if we observe the point x in the
sample space and conclude that the true parameter belongs to the subset S,
of the parameter space, we can have 100 (1—a) per cent confidence in this
conclusion,

Similarly, if {S,; x € X} is a family of subsets of ® with the property that,
for all 6,

Pe{x:S, 260} 2 1-ua, ,
then S, is a confidence set for 6 with lower confidence coefficient 1 —o. Having

observed x we can then be at least 100(1 — ) per cent confident that the true
parameter is in S,.

Construction of confidence sets

It is one thing to define a family {S,; x € X} of subsets with the property 5.1
and another to construct such a family for any given problem. In section 5.1
we illustrated one way of doing this in the case of a real parameter, and the
general statement of this method is as follows. If we can find a function
t(x, 6), called a pivotal quantity, whose #-distribution does not depend on 6,
and which, for each fixed x, is a monotonic function of 8 (0 being a real para-
meter), then we can apply the method of section 5.1. For then we can find ¢,
and ¢, such that

Pyfty < t(x,0) < tp} = 1—aq,

and, t(x, ) being monotonic, we may rewrite the inequality in braces in the
form

0:(x) < 6 < 6,(x),

from which we derive [8,(x), 8,(x)] as a confidence interval for 6. While this
method is applicable in certain important practical problems, it is scarcely of
sufficient generality to warrant trying to find necessary and sufficient con-
ditions for its applicability. However, it is often relatively easy to find an
appropriate pivotal quantity when normality of the family of distributions on
the sample space may be assumed. The example of section 5.1 is one illus-
tration. As another, we consider linear regression with one concomitant
variable, that is, we have the model '

5= actBarre (=12 n),
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where « and § are unknown parameters, the g;s are known values of a con-
comitant variable and the &s are independent normally distributed errors
each with mean zero and unknown variance ¢2. Suppose that we wish to
determine a confidence interval for j.

The least-squares estimate of f (it is also the maximum-likelihood estimate
when, as here, normality of errors is assumed) is

B= Z(ai_a)xi
Z(ai_a)z ’

n
where of course nd = Y. a;;and B is normally distributed with mean § and
i=1

variance 6%/ (a;— @)% Since o2 is unknown, it is natural to consider replacing
it by the unbiased estimate

1 A
§% = Y Z (Xi“&“ﬁai)z,

the ‘residual mean square’, and to try as a pivotal quantity

(B—B)\/Z(a;—ﬁ)Z.
N

Since the distribution of this function does not depend on anything unknown
— it is distributed as Student’s t with n—2 degrees of freedom — it is indeed a
pivotal quantity, and we may use it to construct the 100(1 — o) per cent con-
fidence interval for f,

B—t u B+t >
o@—ay Y a—ay S
A similar argument may be used to construct a confidence interval for g,
and for any linear combination &+ ¢f. Consider the latter: &+ cf is normally}

distributed with mean o+ ¢f and variance "

1 (Zl'—-c)2
i [T'z(a.-—a)z}'
d+cB—(a+cp)
5]
’ n Z(a:“a)z

is a pivotal quantity, being distributed as Student’s ¢ with n—2 degrees of
freedom. Hence the interval

; 1 @\ 1, (@-cf
[OC’FCB-‘I,‘S\/(;-Fm), 0(+CB+t,,S\/(‘;l‘+W):|

is a 100(1 —«) per cent confidence interval for a+cp.

As above
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Another important practical application of confidence sets occurs when the
family of possible distributions on the sample space is parametrized by a
vector-valued parameter 6 and we are dealing with a large sample. Then
although we do not necessarily assume normality of the family {P,}, large-
sample theory enables us to assume approximate normality of the maximum-
likelihood estimator, 8. Subject to regularity, § is approximately normal with
mean 6 and variance matrix V = (nBj) ™!, where B, is the information matrix
for a single observation. It follows that

(@—-0yv-1@-6)

is distributed approximately as ¥* with s degrees of freedom (6 being an
s-vector), Consequently we can find a number 2 such that, for all 8,

Po{@—0YV1(0-0) < 2} = 1-0.
For a given x, then, the set of 8 satisfying
[0-8()] V7 [0-0)] < 2

is a 100(1 —o) per cent confidence set for 6. This set is an s-dimensional
ellipsoid centred on 8(x).

Example

Consider again the linear regression model of section 5.3.1, assuming now that
the errors are independent and identically distributed, but not assuming
normality of these errors. Suppose that n is large and that we wish to deter-
mine a confidence set for § = (8, 8,), where 8, = a-+c,fand 8, = a+c,f.
For reasonably spread-out values a,, 4, . . . , 4, of the concomitant variable,
the least-squares estimators d and § are approximately jointly normally distri-
buted. This may be proved by a multivariate central limit theorem (see Cramer,
1937, p. 113). Moreover, by least-squares theory, d and B have respective means
o and f, and variance matrix

5 E2]

Hence 8, = d+c¢,f and 8, = d+c, f are approximately jointly normal with
means 8, and 6, respectively and variance matrix

1 (01—5)2 1 (c;—a)(c,—a)

K i o= A =
1 (e=@)(e,=@) 1 (-8
n y@-a n Yl(a-a)

If n is large and ¥ (a;—@)? = O(n), then to order n™*, V, = V, where s*, the
residual mean square, is an unbiased estimate of o2, Consequently § = (8,,8,)
is approximately normal with mean (6,, 6,) and variance matrix V,, and it
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follows that (8— )V, 1(9—6) is distributed approximately as x> with twolle
degrees of freedom. We can now use the argument of section 5.3.2 to obtain]
an elliptic confidence set for 6. 4

This example is not of course a direct application of the argument of section
5.3.2 in that we are not using the method of maximum likelihood. Howeverif
is in exactly the same spirit and it illustrates the kind of approximations madg
in large sample maximum-likelihood theory. It may seem that there is a great
deal of approximation going on and that the resulting confidence set is only}
very approximately a 100(1 —«) per cent confidence set. This may well bet 3
but it does not give cause for great concern in practice if we adopt the point of]
view that we are using observations to divide possible parameters into 4
plausible set and implausible set. Then it is adequate to know roughly whaf
we mean by the plausible set.

Optimal confidence sets

As has been indicated already, there is nothing unique about a confidence s
of given confidence level. This raises the question of which of many 100(1-a)38
per cent confidence sets we should choose in a given situation. It may be that we}
want one which is in some sense ‘smallest’ and this can be interpreted as one
whose probability of covering false values of the parameter is uniformly mini-
mum (if such a confidence set exists). It may be that extraneous aspects of the]
problem at hand require a confidence set of given ‘shape’. Indeed there is a}
considerable body of theory concerned with the problems of the existence and
construction of a confidence set which is optimum relative to some stated|
criteria, and much of this is closely connected with the theory of optimum
tests of hypotheses which we shall discuss in a subsequent chapter. The reader,
however, may find that the confidence set interpretation of the basic intuitive
idea of a subset of parameter values becoming relatively plausible after an
observation has been made is less convincing than the Bayesian interpretation}
which again we shall discuss later. So. we shall not pursue the problem of ®
optimum confidence sets further at this point.

Examples

Letx,, X3, ..., X, be a random sample from a N {4, o?) distribution with y and
o unknown, and let '

52 = n—i—l-Z(x,.—Yc)z.

Show that s?/c? is a pivotal quantity which may be used to construct a con-
fidence interval for o2,

Given a random sample x,, X5, . . . , X, from the exponential distribution with
density 8e~**, construct a 95 per cent confidence interval for 6.
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Let x be N (g, 62) with u and o unknown. Show how (x — p)/o may be used to
construct a wedge-shaped confidence set for 8 = (u,.0).

If x;, X3,...,X%, is a random sample from an N (g, ¢?) distribution, then
(%= u)/s may be used to find a 100 (1 —«) per cent confidence interval for u,
(4, /1), say; while s?/g* may be used to find a 100(1 —«) per cent confidence
interval for o, (g, &). Here s> = Y (x;—%)*/(n—1). Consider the rectangular
region in the (i, o) plane {(4,0):¢ < p € I, g < ¢ < 6}. This may be taken
as a confidence region for (u, ). What can be said about its confidence
coefficient? :

Let x and y be independent random variables with densities Jle™**(x > 0)
and pe™#(y > 0), respectively. Show that

Cyy = {(A w:ix+uy < a}
is a confidence region for (4, u) with confidence coefficient I —(1+a)e™ "

If x is an unbiased estimator of £ with known variance ¢? and y is an unbiased
estimator of y with known variance a2 and if x and y are independent and such
that, for any 4, x— Ay may be taken to be normally distributed, show how to
obtain 95 per cent confidence limits for the ratio £/7.

These limits will sometimes include the whole real axis, and it has been
suggested that such cases should be omitted from the calculation of the
proportion P of times that the confidence interval covers the true value. Show
that, if this were done, the proportion P would depend on &/x.

Examples
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in previous chapters and we now consider some of the main aspects of the
latter. : 3

descriptions of the inherent variability in the‘ observational situation be'»
considered ; and one member of this family is the true description, though
which one is unknown. .

When we are dealing with a real situation in which observations may be
made and which are described by a probabilistic model, a scientific hypothesig
is a statement regarding the probabilistic structure describing the inher
variability in the observational situation. For example, suppose that a verf
large population is classified according to two factqrs A and B, that th
are r different categories Ay, A,,..., A, of the factor A and s categorie§
B,, B,, ..., B, of B. Each individual in the population belongs tc? one and
only one of the rs cells A;B;, and the proportion 6;; of the .popu'latlor; in thg
cell A;B; is unknown, i = 1,2,...,nj=1,2,...,s An md1v1dL'1a1 c‘ho e
at random from this population then has probability 8;; of falling in th§
cell A;B;. If we observe the numbers in a random sample of n individualg
belonging to the different cells, then a typical observation x takes the form
x = (n{y, 1y, ..., 1) where n;; is the number of individuals in the cell AiB,
and the appropriate family of possible distributions on the sample space is th
family of multinomial distributions, parametrized by 8 = (8,,,6,,,...,0,
The parameter space @ is {0:0 < 6;; < 1, ;,0,-1 = 1}.

Consider the hypothesis that ‘there is no association between the factorsh
and B’. This hypothesis is translated into the language of our multinomial
model as follows:

Let 9"_ = Z 9U and 9_1 = .Zl Gij'
j=1 i=
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Then the hypothesis states that for all i and j
9,-_, = 9,‘, 61. '
Thus the hypothesis imposes a further limitation on the class of possible distri-

butions. Under it the family of possible distributions is the multinomial family
parametrized by 6, and the set of possible 6 is

{6:60 <8< 1,;9.-; =1,8; = 6,0,; forall iand j},

a subset of the parameter space ©.

Generally this is the case. A hypothesis is a statement which implies that the
true probability distribution describing the inherent variability in an observa-
tional situation belongs to a proper subset of the famil y of possible probability
distributions. Alternatively we may say that a hypothesis implies that the true
parameter 6 belongs to a proper subset of the parameter space @; and it is
convenient to identify the hypothesis with the subset, to talk about the
hypothesis w, where » < @,

The theory of hypothesis testing is concerned with the problem: ‘Is a given
observation consistent with some stated hypothesis or is it not?’ A statistical
test of a hypothesis is a rule which assigns each possible observation to one of
two exclusive categories : ‘consistent with the hypothesis under consideration’
and ‘not consistent with this hypothesis’,

Thus in terms of our mathematical model, a hypothesis defines a subset w
of the parameter space © ; a statistical test partitions the sample space X into
two subsets, a set of points each of which is consistent with w; and its comple-
ment, consisting of points not consistent with . There are then as many tests
of a given hypothesis w as there are subsets of X, Our problem is to choose one
which is ‘good’ in some sense.

In simple situations, there is often a relatively small class of tests which
seem worth considering on a purely intuitive basis. For instance suppose that
a new drug is being considered with a view to curing a certain disease. The
drug is given to n patients suffering from the disease and the number r of cures
is noted. We wish to test the hypothesis that there is at least a 50~50 chance of a
cure by this drug. Here our sample space X is simple — it is the set {0,1,2,..., nj}.
The family {Py} of possible distributions on X is (assuming independent
patients) the family of binomial distributions, parametrized by the real para-
meter 6 taking values in [0, 1] -8 being interpreted as the probability of cure.
The stated hypothesis defines the subset w = [3, 1] of the parameter space.
And the only tests of  which seem worth considering at all are those for which
the set of x taken to be consistent with & have the form {x:x > k}. On the
face of it, it would seem absurd to consider that r cures out of n patients were
consistent with «, while r+1 were not, Indeed we may be tempted to go
further and say that there is only one ‘reasonable’ test for this hypothesis w,
namely that for which the set of x taken to be consistent with e is {x:x > in};
though we must bear in mind that less than $n cures are possible even if the
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B(8) are simultaneously uniformly minimized, except in very special circum]

probability 8 of cure is greater than a half,

In order to build up a theory of hypothesis testing and establish methods
which can be applied in situations which are too complicated to be dealt with
on an intuitive basis, it is necessary to analyse the intuitive reasoning which
leads to ‘reasonable’ rests for simple situations. The key ideas of the ‘classical
analysis were provided by Neyman and Pearson. -

The Neyman-Pearson theory

We first change our terminology to agree with that of the classical theory
Accbrding to this, there are in a hypothesis-testing problem, two hypothesed
involved, the hypothesis w of primary interest and the complementary hypo
thesis © ~c. The first of these is called the null-hypothesis and the second the
alternative hypothesis; and the mere fact that they are given different names
suggests that in some sense they are not on an equal footing, a point to whidy
we shall return. A statistical test of w against the alternative ® — « partition
the sample space into a region of acceptance of w — what we have cdlled thel
set consistent with - and its complementary region, a region of rejeetion of
@ (acceptance of ©@—~w), called the critical region of the test of w agains
©—w. Our object in constructing a ‘good’ test may then be interpreted a]
choosing a critical region which is optimum relative to some criterion. ;

The Neyman-Pearson criterion is based on recognition of the fact that with
any statistical test are associated two possible errors.

(a) We may reject @ when it is true, that is, when the true parameter belongg
to w. This is called a Type I error.
(b) We may accept @ when it is false, that is, when the true parameter belongs
to @ — . This is called a Type II error. 1

Associated with any test, then, are two functions which describe the probas
bilities of error characteristic of this test, and these functions are as follows,

Let the critical region of the test be R; a subset of the sample space.
function « is defined on w by

a(0) = Po(R)
and this function describes the probabilities of the Type I error. Similarly the
function f, defined on ® —w by ‘
B(6) = Po(R) = 1—Py(R)

describes the probabilities of the Type H error. The function 1 — () is calle
the power function of the test. 1

A test whose error probabilities are as small as possible is clearly desirable}
However, equally clearly, we cannot choose R in such a way that a(f) and

stances. By taking R = @, the empty set, we can make () = 0 and by taking
R = X, wecan make f(6) = 0. Hence a test which uniformly minimized both
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error-probability functions would require to have zero error probabilitfes,
and usually no such test exists. The position is analogous to that in estimation
which we have already encountered. To demand of a test that it uniformly
minimizes error probabilities is analogous to the demand that an estimator of
a real parameter have uniformly minimum mean-square error. Normally we
can achieve neither. So again we must modify our demands,

The modification suggested by Neyman and Pearson is based on the fact
that in most circumstances our attitudes to the hypotheses w and @ — w are
different — we are often asking if there is sufficient evidence to reject the hypo-
thesis w. In terms of the two possible errors this may be translated into the
statement that often the Type I error is more serious than the Type II error.
Consequently we should control the probability of the Type I error at some
pre-assigned small value «, and then, subject to this control, look for a test
which uniformly minimizes the function describing the probabilities of Type
11 error. In other words we should limit consideration to tests which satisfy
the condition

(@) <o forallfew,

and among these choose that one, if it exists, for which B(0) is uniformly
minimized on @ —w: or, equivalently, for which I'— (8) is uniformly maxi-
mized on ® —,

Now a test in a given class whose power function is uniformly no larger than
that of any other test in the class is said to be uniformly most powerful.
If a test satisfies the condition

() < « forallfe o,

a is called the significance level of the test, (Incidentally

sup a(6)

few

is called the size of the test). Hence the Neyman-Pearson theory may be sum-
marized by the statement ; :

An optimum test is a uniformly-most-powerful (U.M.P.) test of given signifi-
cance level o,

Simple hypotheses

While the criterion of optimality just stated may not be universally acceptable,
it is appropriate enough in certain circumstances to warrant further investi-
gation. Immediately we are faced again with the problem of the existence of
such a U.ML.P. test, a problem which we shall now consider.

We start from the simplest possible situation, that where ® has only two
clements 8, and 0,, say, and where @ = {60}, ®—w = {8,}. A hypothesis

Simple Hypotheses
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which specifies a set in the parameter space containing only one element is
called a simple hypothesis. Thus in statistical terminology we are now con-!
sidering testing a simple null-hypothesis againsta simple alternative, a problem
of limited practical interest but of considerable analytic content. In this case,
the power function of any test reduces to a single number, so that the ‘uniformly®
in UM.P. becomes redundant, and we examine the question of the existence
of a most-powerful test of given significance level .

Suppose that the probability distributions Py, and Py, on the sample space]
X are defined by density functions p, and p; respectively with respect to somé
fixed measure on X, (There is no loss of generality in this assumption since thel
fixed measure may be taken, for instance, to be Py, + Py,. We shall denote byj
dx an element of the fixed measure so that Py, (E) = |g pi(x) dx; when X i
Euclidean and the fixed measure is Lebesgue measure this is a natural notationd
if X is discrete and the fixed measure is natural counting measure, g p;(x)dg

is to be interpreted as ). p;(x;).) The key result on most-powerful tests il

x,€E S
the Neyman-Pearson fundamental lemma, of which we now prove a limited!
version. i

Fundamental lemma

Let R be any region of the sarﬁple space such that Py (R) < «. Suppose that ther" .
exists a region R* of X of the form R* = {x: P1(x)/po(x) = k} and such that
Pg,(R*) = a. Then Py, (R*) 2 Py, (R). '

Proof. We shall comment later on the existence of an R* satisfying the stated!
conditions. Assume for the moment that such an R* does exist, Denote by
and R* the complements of R and R* respectively. :

Then Py, (R*)— Py, (R) = fwi py(x)dx— f Py (x) dx.

R*nR

Now on R*~R  p,(x) > k po(x),

and so f ~_pix)dx = k fR‘nR’ Do(x)dx.

R*AR

Similarly J;MR n{x)dx < k fﬁ*ano(x) dax.,

Therefore Py, (R¥*}—Py, (R) = k [fk‘nu Polx) dx—f]{‘ﬁR Po(x) dx:l

- kUR,pomdx—fR po(x)dx]

= k[ Py, (R*)— Py, (R)]
=0,
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since k > 0, Py (R*) = o and Py (R) < a;
Le. Pex (R*) = Pﬁx (R):

which completes the proof,

This result, that R* is the critical region of a most-powerful test of signifi-
cance level o of {0,} against {6}, is one of considerable intuitive appeal. *
Suppose that we set out to order points in the sample space according to the
amount of evidence they provide for 8, rather than 8. We should naturally
order them according to the value of the ratio P1(x)/po(x); any x for which
this ratio is large provides evidence that 6, rather than 6, is the true para-
meter. And if we must choose a subset of possible observations which indicate
that 6, is the true parameter, then it seems sensible to put into this subset
those xs for which the ratio p, (x)/po(x) is large - in other words to choose a
subset of the form {x : p, (x)/p, (X) > k}. The Neyman-Pearson analysis, based
on probabilities of error, now gives us a basis for choosing k ; we should choose
k, so that, if possible,

pi(x) > } _
P {x ol T KT

If Py, and Py, are discrete, it will be possible to satisfy this equation only for
very special values of a. For example, suppose that an observation x is the
number of successes in three independent trials; the probability of success is
either 8y = } or ; = £; and we wish to test the null hypothesis {8} against
thealternative {f, } at significance level a = 005, It is fairly obvious, and easily

verified, that the ratio p, (x)/p, (x) is an increasing function of x, Consequently
the problem of finding k such that

Py, {x: ) k} = & = 005
Po(x)

is equivalent to the problem of finding k' such that

Po{x:x 2 k'} = 005.

Now x can take only the values 0,1,2,3: and if2 < &' < 3,
Po{xix 2 K} = Py {x = 3} = & < 005,

whileif | < k' < 2,

Po{x:x 2 k'} = Py {x=20rx = 3} =8> 00s.
It now becomes clear that there is no k' such that

Py {x:x = k'} = 005

and consequently no k such that

Py, {x 2i0) k} = 005,

"pol®) ”
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Referring then to the fundamental lemma, this is a situation where there does
not exist a set R* satisfying the conditions stated in that lemma. Hence we
cannot use the lemma to construct a most-powerful test of {§,} against {0.)
of significance level a. |

There are two ways of overcoming this difficulty, one practical, the other more
designed for mathematical elegance. The practical outlook is as follows,
The test to which we are led by the fundamental lemma is a likelihood-ratio
test of size a, and the lemma may be regarded as providing support for
likelihood-ratio tests. The fact that in particular cases there does not exist one
whose size is exactly equal to & does not matter ; we merely use that likeliho
ratio test of significance level a, whose size is as nearly as possible «. Thusi
the discrete example which we have just been discussing, this outlook woul
lead us to use the test whose critical region consisted of the single elemenl
x = 3, a test of size g According to this, only the observation x = 3 woul
provide sufficient evidence for rejecting the null-hypothesis that. the proba
bility of success was one quarter.

The ‘mathematical’ method of overcoming the difficulty caused by possible
discreteness of the probability distributions involved is to allow ‘randomized’
tests, according to which, having observed an x in the sample space, with
probability ¢(x) we decide that the alternative hypothesis is true and with
probability 1 ¢(x) we decide that the null-hypothesis is true. Thus any nons
negative function ¢ on the sample space taking values between 0 and 1 defines
a statistical test, and in particular those functions which take only the values
0Oand 1 define the type of tests which we have been considering up to this point;
namely non-randomized tests. If we adopt this more general view of what
constitutes a statistical test, then we may refer unambiguously to the test ¢,
where ¢ is a function on the sample space such that 0 < ¢(x) < 1, forallx,
Then for testing a hypothesis w against the alternative ® — , the error proba-
bility functions of the test ¢ may be written as follows :

o(8) = Eqg(@), forbe w.
B(6) = 1—Ey(¢), forfe®—q.

We may still apply the Neyman-Pearson criteria of optimality to this more
general class of tests, and, among these satisfying

a) < «a,

look for that (if it exists) which uniformly maximizes 1 — B(6). In particulari
@ is simple, w = {6}, and 50 is @ —w, ®—w = {8,}, we may still define an
optimum test as a most-powerful test of significance level «. If we do S0, it i§
possible to prove a more general version of the fundamental lemma which
establishes the existence, in all circumstances, of such an optimum test of 4
simple hypothesis against a simple alternative. This optimum test is a
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randomized likelihood ratio test which has the form

s =1, if 29,
Po(x)

s =c it P9 _
Po(x)

o) =0, it 2% o
Po(x)

Thus in the example above, where x is the number of successes in three
independent trials, and we wish to test that the probability of success is
6o = % against the alternative that it is 0 1 = 2, this optimum test would read :

if x = 3, decide that the probability of success 6 is 3

if x = 2, decide, with probability 2-2/9, that 8 =.2 and, with probability 6-8/9,
that 6 = §;

if x < 2, decide that 8 = L.

The probability 2-2/9 involved here requires some explanation, which illus-
trates the general method of constructing optimum randomized tests. We start
by considering that x for which p 1(x)/po (x) is a maximum, namely x = 3. Since
Pyy(x = 3) < 005, we take ¢(3) = 1. Now consider that value of x for which
P1(x)/po (x) takes its next-to-maximum value, namely x = 2. Po(x =2) = &
and since Py (x = 2 or 3) > 0-05, we canriot ‘put the whole point x = 2’ into
the critical region and finish with a test of significance level a. So we put a
‘fraction of the point x = 2’ into the critical region, a fraction just sufficient
to make the probability of the Type I error equal to 0-05. We choose ¢ so that

Py (x = 3)+ Py (x = 2) = 0:05.

This equation has the solution ¢ = 22/9, and so the test

TP =1
22
$Q2) = 35
ox)=0, if x< 2,

has Type I error probability 0-05 exactly.

For the version of the Neyman-Pearson lemma which establishes that this
method of construction leads in general to a most-powerful test of significance
level o of a simple null-hypothesis against a simple alternative, the reader is
referred to Lehmann (1959), p. 65. : .

We conclude our discussion of tests of a simple null-hypothesis against a simple
alternative by considering a continuous example. Let x = (x;, x,,..., x,) be
a random sample from a normal distribution with variance 1. Construct a

“most-powerful, a-level, test of the null-hypothesis that the mean of this distri-
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bution is 8, against the alternative that it is 6,, a number greater than 6,
Consider a set of the form {x :p, (x)/po(x) > k}.

py(x)

We have
Po(x)

2k« eXP{—%Z(Xi‘el)z'*'%Z(xi"'eo)z} >k
< n%(0,—0,)—3n(63—03) = k&'
<x =k

Hence we can find a k such that Py, {x:p, (x)/p,(x) > k} = oiff we can find
a k" such that Py {x:X > k"} = «. This we can certainly do. If 8, is the trud

parameter, X is N(6o, n™*), or \/n(X—0,) is N(0, 1). Let &, be the upper ”,“

per cent point of an N(0, 1) distribution. Then by definition,
Pgo{\/n(x*'eo) = ka} = O,

oo ke
Therefore Py <X = 7.+ Oor = a,

J

that is, the set

k

R* = {x:f > \/—;+60}
is a set satisfying the conditions required in the statement of the fundamentalf
lemma, and so it is the critical region of a most-powerful a-level test of {60}
against {6, }. o . . ;

It should be noted that this critical region is not quite unique, We can add}
to it or subtract from it a set of probability zero under each hypothesis, and
the resulting region will have the same probabilistic properties as R*. Thus]
for example, the region ;

X k“+6}
x.x>'ﬁ 0

also is the critical region of a most powerful a-level test of {6} against {§,},
since, fori = 0, 1

ok,
Po({i = ‘%""90} = 0

Composite hypotheses

In practice almost invariably we are interested in tests of composite rather than
simple hypotheses, a composite hypothesis w being one whe.re the set @
contains more than one element. Hence it is the existence of ur}y’f)rmly-most-
powerful tests which will be of practical interest. Unfortunately it is the excep-
tion rather than the rule that a U.M.P., test exists, . '

Suppose that we consider the problem of testing a simple null hypothesis
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{60} against a composite alternative ©—{6}. (For instance, we might be
interested in testing whether an unknown probability of success is a half
against the alternative that it is not a half.) The power 1—B(0) of a U.M.P.
a-level test of {8} against © — {60} must equal the power of a most-powerful
a-level test of {6,} against {6}, for every 0 in @ —{0,}. As often as not the
critical region of a most-powerful a-level test of {6} against {6} is essentially
(that is, apart from zero-probability sets) unique. Hence in order that aUM.P,
test a-level test of {6,} against ©— {0} exist, it is necessary that the most-
powerful a-level test of {6} against {6} should be the same for all § ¢ © — {60}

This sometimes happens. Consider the example of section 6.2.4, with the
problem of testing {6,} against {6,} replaced by that of testing {6,} against
{6:0 > 6,}. Forany 0 > 8o the test with critical region

= K
{X X > %+0°}

is a most-powerful «-level test of {60} against {6}. Hence this test is a U.M.P,
a-level test of {6} against {8:6 > 6,}.

-]

Figure 4 Graphs of power functions of size-a tests of the hypothesis
that 6 = @,

However we do not have to look much further to discover a situation where
no UM.P. test exists. Suppose that we consider the same observational
situation but now wish to test {60} against {6:0 # 6,} — what is termed a two-
sided alternative, for obvious reasons. Essentially the only test which achieves
maximum power at values of § > 0o is that just quoted, namely that with
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critical region

ke
Cl =4X:X =2 —+ 00 .
Jn _
On the other hand, if we consider a most-powerful a-level tesF of {0} againsl
{0} for any 6 < 0, we discover that such a test has essentially the critical

region

se-kio)
C2={X.XS—*\—/~£+O, |
and the first test has much smaller power at values of § < 0o than.has thel
second. So no U.M.P. test of {6} against {#:6 = 6,} exists. The position mayy
be summarized graphically as in figure 4. »
Theunbroken curve in Figure 4 represents the maximum powerattainable b
an a-level test at different values of 8. The curve broken to the left of 6, and
unbroken to the right represents the power function of the test with criti
region C ; while the curve dotted to the right of 6, and unbroken to the el
represents the power function of the test C,. ) . '
It may appear to the reader that there is an intui.ti.vely obylous best ¢-level
test of {0} against {6:0 # 0}, namely that with critical region

Cy = {x:|x—=0| > k},

where k is determined by
Po{|x=0o| > k} = a.

Indeed this is so and this test would in fact be used in practice. The faf:t t‘ :
the test C; cannot be justified as being U.M.P. is an indictment of the cnter}
rather than the test. We are back in a situation very familiar to the thepretx :
statistician, The criterion ‘a U.M.P. a-level test is optimpm" has consxdera.b :
appeal, at least for some testing problems. However it is pot helpful if
U.M.P. a-level test does not exist. More often than not this is the case, and
as we have just seen, this criterion may fail to justify an intuitively acceptablg
test. This suggests modification of the criterion.

Unbiased and invariant tests

Unbiased tests

When considering optimum estimators in chapter 2, we found that thd
criterion of ‘minimum mean-square error’ was not a very useful one bgcau
seldom in practice does a uniformly minimum mean-square error estimato
exist. Accordingly we imposed a restriction on the class of estimators con}
sidered, a restriction designed to eliminate ‘ridiculous’ estlmgtf)rs and th
asked whether there existed within this restricted class a minimum mean
square error estimator. We may adopt the same approach for tests, and the
are two main ways in which this has been done,

]
)
i
|
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Already we have restricted attention to a-level tests, that is, tests of w against
©® —w with the property that

«(@) <o forallfew,

where «(6) is the Type I error probability function ; this on the grounds that
the Type I error is more serious than the Type IL. After a little thought it can
be seen that it is not unnatural to impose the further restriction that the
power 1—f(6) of any test worth consideration should be greater than or
equal to o, for all § € @ — w. If we do not make this additional demand then
we face the possibility of using a test with the property that according to it we
are more liable to accept @ —w when it is false than when it is true,
A test satisfying

a) <o forallfeqw,
1) =2 a forallfe®—qu

is said to be an unbiased a-level test. It may be that there exists a U.M.P.
unbiased a-level test, where there does not exist a U.M.P. a-level test. Indeed
many intuitively acceptable tests such as the test C; of the preceding section
can be justified as being U.M.P. unbiased a-level. However we shall not pursue
the investigation of the class of unbiased tests. An excellent account of the
theory and application of unbiasedness of tests is given by Lehmann (1959).

Invariant tests

For certain problems another natural restriction on the class of tests worth
considering suggests itself, We shall illustrate this by means of an example
rather than by a general formal mathematical statement, which requires con-
siderable preliminary background. .

Suppose that x = (x,, X,);that x, and x, are independent and have N 6,1
and N (8,, 1) distributions; and that we wish to test the hypothesis that, = 6,
against the alternative that 0, # 6,. It seems natural to demand that the
critical region of any test worthy of consideration should be symmetric in x,
and x,. If we do make this demand then, for instance, any test with critical
region of the form {x; x, —x, > k} would be eliminated, as it does not have
the required symmetry. On the other hand any test with critical region of the
form {x; |x,~x,| > k } does have the required symmetry. It may be that
within the class of ‘symmetric’ tests there is one which is UM.P. a-level,

Generally speaking Symmetry is expressed in terms of invariance under
some group of transformations, and we are thus led to consideration of the
existence of U.M.P. invariant a-level tests. Again several important intuitively
acceptable tests which are not U.M.P. can be justified as being UM.P. in-
variant, and again we refer the reader to Lehmann (1959) for a comprehensive
account of the theory and application of invariance ideas to hypothesis-

“testing problems.

Unbiased and Invariant Tests
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Just as in the case of estimation theory we are now faced with a dilemma. The
notions of size and power of a test are extremely important for comparing the
virtues of different tests. However the criterion that a UM.P. a-level test is :
best, even when supplemented by further restrictions such as unbiasedness and
invariance, leads to methods for constructing optimum tests only in limited
circumstances. What do we do when faced by a practical problem where these »
methods fail? We may go on seeking new criteria which yield optimum tests
for a wider class of problems in the hope that they will do so for the problem
at hand. Or we may look for a general method of constructing tests which has »
intuitive appeal and apply this to the given problem in the hope that, while it

may not yield a solution which can be justified in terms of criteria already |
introduced, this solution will make adequate, if not necessarily optimum, use
of the information provided by our observation. In the next three chapters we

discuss tests constructed from the latter point of view. ;

Examples

In order to test the hypothesis that an unknown probability of success is less“
than a half, twenty independent trials are carried out, and the hypothesis is!
accepted if and only if the number of successes observed is less than twelve,
Draw graphs of the error probability functions of this procedure.

Let x;, X5,..., x, be a random sample from a Ny, 1) distribution. Suppose
that the critical region { (x,, x,, ..., x,) /)X > 2} is used to test the hypo-
thesis that 4 = 0. What is the size of this test? Sketch the graph of its power

function, ]

Given a random sample x,, x,, . . ., x, from a N (y, 1) distribution consider
the two size-x tests with critical regions

R, ={(x1,x2,..
R, ={(x1,x2,‘..

.,x,,);]f' > k!}
’xn);zxiz >k2}

of the hypothesis that u = 0. (k, and k, are such that the tests have size o) Is
one of these tests uniformly more powerful than the other?

Let x, x,, ...
real numbers with density [64/T"(g)] x#~ te~ %%, If ¢ is known construct the most-

powerful size- test of the hypothesis {6} against the alternative {6}, where {

81 > 8, and show that there exists a U.M.P. test of {00} against {6:0 > 6,).
In the case where g = 1/n, show that the power function of this test is

[ = (1 —g)¥,

It is claimed by the seller of fishing rights that a lake contains at least N fish,
where N is a large number. To investigate this claim part of the lake is netted,
and m captured fish are tagged and returned to the lake. Subsequently, when

Hypothesis Testing

» X, be a random sample from the distribution on the positive ]

6.6

6.7

6.8

6.9

the tagged fish have distributed themselves over the lake, n fish are captured
and r of these are found to be tagged. The seller’s claim is rejected if #/n is
greater than some number k. Show how to choose k so that the probability of

Let xy, x,, .. -»X, be a random sample from the uniform distribution on
(0, 0). Show that there exists a U.M.P. size-u test of {6} against {6:6 < 6,}.
Is there a U.M.P. size-a test of {6,} against {6:6 + 6,}7 (Camp, Dip)

Tht? common distribution of independent, identically distributed random
variables x,, x,, . . ., x, has density

exp{—(x~80)} (x> ).

TQ fest the null hypothesis {6:0 < 1} against the alternative {6:0 > 1}, a
critical region of the form

{(x1 x5, . ces Xp) tmin(xy, x,, . ., W) > ¢}

is proposed. Determine ¢ so that this test has size . Sketch the graph of the
power function of the test.

The p.rob_aPility that r particles are observed in the course of a certain experi-
ment is e A/l (r =0, 1., 2,...). Prove that the probability that altogether N
particles are observed in » independent replicates of the experiment is
e~ nA)N/NI,

Suppose that 4 is known to be either 4 or 1, Compare the following rules for

deciding, on the results of five independent replicates of the experiment which
value 4 has, :

Rule L. Decide that 2 = 4 ifand only if the total number of particles observed
is less than four.

Rulej 2. Decide that 4 = 4 if and only if, in more than two replicates no
particles are observed,

The random variables X1s X2, . . ; , X, are independent and x;is N6, 1). Show
that the most-powerful size-0-05 test of the null hypothesis that each 8 is zero
against the alternative that 6, =14 for i=1, 2,...,rand 9, = —4 for
I=r+1,...,nhas critical region

{(xl,xz,...,x,,): Zx X— Y x> 1645 \/n}
= 1=t

=r

How large must » be to ensure that the power of this test is at least 0-9?

; 107  Examples

f

f




7 The Likelihood-Ratio Test and
Alternative ‘Large-Sample’
Equivalents of It

Hypothesis testing problems are divided into two main classes called respec- § -
tively parametric and non-parametric problems. Parametric problems are
those for which the true distribution on the sample space may be assumed to
be known apart from the values of a finite number of unknown real parameters§
- in other words when the parameter space ©® may be taken as a subset of a
finite dimensional Euclidean space. In non-parametric problems the family of |
possible distributions is larger. For instance an observation may consist of a §
random sample from a distribution about which we are prepared to assume
nothing other than its absolute continuity; there is then a probability distribu-
tion on the sample space corresponding to each probability density function §
on the line, and this family of distributions is too large to be parametrized by §
a finite-dimensional vector-valued parameter.

The first general method of test construction which we consider is applicable

. mainly (o parametric problems,

7.1  The likelihood-ratio test

Suppose that the family {P;:0 ¢ ®} of possible distributions on the sample
space is defined by a family {p(-, ) :0 ¢ ©} of density functions with respect]
to some fixed measure. Again this will usually be either ‘counting’ measure, in§
which case p(x, ) is simply the probability of the observation x when § is}
the true parameter; or Lebesgue measure when the sample space is Euclidean
and in this case p(x, 8) is the probability density at x when @ is the true paras
meter. We wish to test a null-hypothesis w against the alternative © —u4
a terminology which contains implications regarding the seriousness of errors;
and suggests limiting consideration to tests of some given significance-level a,

The informal argument underlying the (generalized) likelihood-ratio test
is as follows. For an observation x, determine its best chance under © ~q,
and its best chance under w. If the ratio of these best chances is big enough,
this indicates that ® —  is true and x is put into the critical region if the ratio
is not very big the observation x does not provide enough evidence to refute
w and x is not then put into the critical region. The critical value of the ratio
is determined by considerations of the size of the test.

108 The Likelihood-Ratio Test and 'Large-Sahple' Equivalents
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‘Formally the test is defined as follows :

sup p{x,0)
Let A(x) = %8-o

sup p(x,6)

few

The critical region of the size-a likelihood-ratio test of o against O~ is
{x:2(x) > K}
where k is determined by the condition

Sup Po{x:A(x) > k} = a,
few

(In the case of discrete probability distributions - see section 6.2 - it may not
be possible to find a non-randomized test whose size is exactly equal to o; in
thiscase k is chosen to make the size of the test as nearly as possible ®, consistent
with its significance level being o:.)

Example

An observation x is the number of successes in n independent trials with
unknown probability 8 of success in each, F ind an a-level likelihood-ratio
test of the hypoghpsis that 6 < 09 against the alternative that § > 0.

PO Biliepr
plx, x/n)  (x/ny(1=x/my== =
s 6o then A(x) = plx, x/n) _ O/mP(1—x/myr==
p(x,00) - G5(1—0,y

Now A(x) is an increasing function of x and so A(x) > kiff x > k. Hence the
critical region of a likelihood-ratio test takes the form {x:x > k'}.
We have to choose k' so that, if possible,

If;:- < g, then A(x) =

sup Py{x > k'} = a.

956y

It is clear that

sup Py{x > k'} = Py {x > k'}.

8<6y

Hence we must choose k' so that, if possible,
Py {x >k} = a.

Because of the discreteness of the problem equality may not be possible for a
non-randomized test. So we choose k' to be that integer such that

Pof{x > Kk} < a
and Py {x > k'—1} > .

The Likelihood-Ratio Test
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This test is of course the only intuitively reasonable a-level test of {6:0 < 4}
against {0:0 > 6,}. According to it a large enough number of successes
indicates that the alternative is true. Indeed if the size of the test happens to be |
a, it is a UM.P. a-level test (see Lehmann, 1959, p. 70). :

Example : 3
A problem of fairly common occurrence is the following. An observation x is ]
of the form x = (y, z) where y = (y, y3u. ..,y and z = (24, 25, ..., z,) are
random samples from distributions which are assumed N (1;,6%) and N (5, 6%) ;
respectively, u,, 4, and o* being unknown. We wish to test the hypothesis that !
Wy = i, against the alternative that uy # u,. This problem arises, for
instance, when the ys are measurements on control (untreated) patients and
the zs corresponding measurements on treated patients; we dre prepared to i
assume that the only possible effect of the treatment is to ‘shift” the distribution -
mean; and we wish to decide whether we have enough evidence to conclude
that it does so.

We may arrive at a ‘reasonable’ test by the following heuristic argument. |
If gy = py then §=n"'Y y;and Z=n""'Y z will tend to be relatively
close to one another; if u; # u,, they will tend to be relatively further apart, !
Relative to what? Relative to the inherent variability in experimental units, or, }
in other words, to @. So |j~Z|/o will tend to be small if u, = u, and to be
largerif u; # u,. We do not know ¢, but the same argument will apply if we
replace ¢ by an estimate of it. Now an unbiased estimate of ¢2, which appar-
ently is as good as possible is
= ‘z‘n"l:z [Z (Yi‘}_’)z'*'z (zi—Z)z:I,

the average of ‘best’ estimates obtained from the separate samples. Hence a
reasonable-looking critical region for the test of interest might take the form

{x:lf"fl > k}.

Let us now determine the shape of the critical region of a likelihood-ratio test. !
In the example ]

S2

8 = (g, 42,0%),0 = {f:—00 < py < 0, —0 < yp < 0,0% > 0},
andw = {0:0€®, u; = u,}.

1 1
Moreover p(_x’ 0) = WCXP[—ZE{Z(.Vx_#l)z-FZ (Zi—MZ)Z}]a

_ 1 1 N2 512
and ess;lz)w p(x,0) = (27[)"6’2" exp l: 352 {Z (vi—3) +Z (z,—2) } ]
— 1 e "
T @ue
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1
where 62 = E);,:Z (y,-?)2+z (Zi—fl)z:,;

while sup p(x,0) = ———__g~"
p p(x, 0) el "

few

) 1
where ¢? = ;[Z G- +Y, (zi—ﬂ)z], G +2).

=
il
N —

0'.2 n
Hence A(x) = [‘Tz] .
é
Now 6% = 624 L(5—-2)?,
and so A(x) > kiff M >k
é

and this inequality in turn holds

o intd

> some constant.

Hencc? the ‘shape’ of the critical region of a likelihood-ratio test is exactly that
to which we were led by the previous heuristic argument,
If we wish a size-« test, it remains to determine a constant ¢ such that

sup P, {l—}-)%z—l > c} = 0.

It transpires that the 6-distribution of (F—2)/s is the same for all O ¢ w, that

in fact for all such 4, {'—2)/s}\/(4n) has Student’s r-distribution with 2n—2

geg.rees of freedom. So ¢.can readily be determined from tables of this distri-
ution.

This is a case where the likelihood-ratio test can be justified in terms of

'criter'ia introduced in chapter 6. It is U.M.P. unbiased and also UM.P,
invariant (Lehmann, 1959, pp. 172, 224), ’

A}I, ote. The likelihood-ratio size-a test discussed in this section has the property
that

a{f) = «, forallfe o,

where a(Q) is the Type I error probability function. Generally a test with this
property is said to be similar.

The Likelihood-Ratio Test
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Example: testing the hypothesis of no association in a contingency table

We have already discussed (chapter 6) the formal translation of this hypo-
thesis into the general terms which we are adopting throughout, An observa-
tion x has the form (n,,, n,,, ..., as) Where the ny;s are integers. A typical §
has the form (6, ,, 6, ,, .. ., §,,) where 0 < 8; < land Zj 6 =1,

and  p(x, 6) = constantx [ 67,
i

The null hypothesis w is the hypothesis {0:0€0,06,=6,0, » all i and j}
where 6, = 3 6,;and §,; = Z 0;;.
J

Forany 6 € w we have
p(x, 6) = constant x [ (6,.0,)™
L

= constantx [[ 9" [T 6% in obvious notation,
: i i
and remembering that )’ 6, = ¥ 6, = 1, we find that
7 7

n;, i n; Wl
sup p(x, 6) = constantxn ~ T2

few j L.

. _—
Obviously sup p(x, 6) = constantxn«[ﬂ] .

0@~ 6jLn

Am=mfﬂfﬂﬂﬁ

i LR

Hence
sothat log A(x) = ¥ n;log n,;—Y n; log n,.,—»; n;logn;+n. logn.
i i

It is apparent that there is little difficulty in determining the shape of the
critical region of a likelihood-ratio test in this case. However, suppose that we ’
wish a size-« test. Then we have the problem of choosing k, so that

sup Po{d(x) > k,} = a.

few

Now A(x) is rather a complicated function of the observed random valjiaxtble? -
the ny;s - and the problem of distribution calculus involved in deterrnmmg‘lts -_
G-distribution is far from trivial, Butif n_ is large we can appeal to the following

important large sample result which enables us to obtain a good approxima-
tion to the appropriate value of &,. |

The large-sample distribution of 4

Suppose that an observation x is a random sample from some distribt}tion, ]
that is, x = (x,, x,,..., x,) where the x;s are independent and identically !

The Likelihood-Ratio Test and ‘Large-Sample’ Equivalents
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distributed. Suppose further that the true distribution on the space of a single
observation is known apart from the values of a finite number s of unknown
real parameters; that is, the parameter space @ is a subset of R*, We wish to
test a hypothesis w which is specified by imposing r restrictions on

0=10,80,...,0,),

say the restrictions h 50) = 0,7 = 1,2,...,r Here we assume that there are
no redundant restrictions, and that 9 is identifiable without any restrictions,
so that none of the stated restrictions are required for identifiability. In addition
suppose that the family {P}:6 e @ } of distributions on the space of a single
observation is defined by a family {p} :0 e ©} of density functions with respect
to some fixed measure. This means that there is a family {r(-,8):0¢ ®} of
density functions on our sample space of n observations and

P50 = [17 (5.

Typically with this set-up we shall have
S0P p(x,60) = p{x, §(x)},

where 9 is an unrestricted maximum-likelihood estimator of 6,

while sup p(x, 6) = p{x, 6(x)},
few .

where 4 is a restricted maximum-likelihood estimator of , restricted by ihe
conditions hy(d) = 0,j.= 1,2, ..., r;and in this case

p{x, 0(x)}
Ax) = 1503
)= e

The important iarge-sample result of distribution calculus to which we
have referred is:

Theorem

In the situation just described, subject to regularity, 2 log 1 is distributed, for all
few, approximately as y*(r), r being the number of restrictions on 6 required
to define w.

Proof. We shall not give a detajled proof of this result, but shal} merely indicate
how it follows from the large-sample distribution theory of maximum-
likelihood estimators, restricted and unrestricted, which we considered in
chapter 4, '

Let 8, denote the true parameter, and suppose that 6, & . In this case if n
is large, both 8 and § are near 6y, and so near one another,

The Large Sample Distribution of 1 -
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Consequently 2 log 4 = 2{log p(x, §)—log p(x, 6)}
= (0— 06y {- D} log p(x, )} B-9),

a result obtained by expanding log p(x, 6) in a Taylor’s series about 8, and
assuming that D, log p(x, 8) = 0, that is, that the unrestricted estimator 8
emerges as a solution of the likelihood equations.

Moreover —Dj log p(x, 8) ~ nB; ~ nBg,,
where By is the information matrix for a single observation.
Hence 2log i~ n(@-6)yB,, @)

Now if Y = n~*D, log p(x, 0y) then Y is approximately N (0, By,) (see
section 4.6)

and  /n(~0,) ~ By'Y,

while . /n(6—6;) ~ P, Y,

where Py, is defined in section 4.7.3.
Therefore  2log A > Y'(B;,' Py Y.

Let Bg, = AA', where A is non-singular ; this being possible if the informa-
tion matrix B, is non-singular as it normally is when 6 is identifiable. Further]
letY = AZsothat Z = A=Y is approximately N(0, L).

Then 2logi ~ Z'A'(Bs,} Py )AZ '
=Z7Z-Z(A'Py,A)Z

Now (A'Py,A)> = A'PsAA'P, A = A'(Pg, By, Py ) A, i

and Py Bg, Py, = Py, (see section 3.10.1). i

Hence APy A is idempotent, and its rank is that of Py, namely s—r, It}
follows that (I,— AP, A) is idempotent of rank .

Now 2logid >~ Z'(I;~A'Py, A)Z.

The right hand side being a quadratic form in independent N (0, 1) random
variables with an idempotent matrix of rank r, is distributed as y?(r). Hence
2 log 4 is distributed approximately as x(r).

Let us apply this result to the problem of section 7.1.3, that of testing the no-
association hypothesis in a contingency table. Here the parameter space

@ ={0=1(0,,,613...,0,):0< 6, < 1,2}0;, =1},

has dimension ab~ 1, for it contains an (ab— 1)-dimensional rectangle but not
one of dimension ab. The hypothesis to be tested specifies the subset

®={0e®:0;=06,6,alliandj}. I

The Likelihood-Ratio Test and ‘Large-Sample’ Equivalents

724

7.3

115

In this definition of w there are g+ b~2 ‘free’ parameters, namely 6,,6,,...,
6,-1,., (but not 6, , because 260, =1)andg,, 0.2,...,6. ,_, (butnot 8,,).

Sow has dimension a+ b 2. Hence we must have imposed (ab— 1)— (a+b-2)
non-redundant restrictions on f e © to ensure that 8 € w. Of course
(@-1)—(a+b-2) = (a=1B-1),

and so in this case if n_, the total number of individuals observed, is large,
2log A is distributed approximately as y?{(a—1)(b— 1)}, when the no-
association hypothesis is in fact true, If k, is the upper 100x per cent point of
such a y*-distribution, then {x:2log A(x) > k.} is the critical region of a test
of the no-association hypothesis, which is approximately similar size «.

The reader may find somewhat facile the argument by which we arrived at
the conclusion that w is obtained from @ by imposing (a—1)(b— 1) “inde-
pendent’ restrictions on 6, If so he may be more convinced by ‘reparametrizing’
the whole problem in a way which corresponds precisely with the description
in section 7.2.1, and writing down explicitly the appropriate independent
restrictions in terms of the new parameters,

In many practical hypothesis-testing problems, the parameter space © is a
subset of R* and the set ¢ specified by the null-hypothesis is defined by stating
essentially that 8 € @ satisfies certain restrictions, :

say h;(0) = 0, J=12,...,r

This basic problem may be disguised to some extent by a description, which
for reasons of Symmetry, necessitates certain restrictions on 8 for identi-
fiability and also by stating the restrictions, which define w, in terms of
freedom equations rather than of constraint equations. Even when disguised
in such ways, however, the problems can, at least in theory, be reduced to the
form stated initially by a reparametrization, and it suits our convenience to
think of such problems as expressed in this ‘canonical’ form. Application of the
likelihood-ratio test to such problems usually involves the calculation of
an unrestricted maximum-likelihood estimate 8(x), and" also a restricted
maximum-likelihood estimate 8(x). In examples 7.1.2 and 7.1.3 it was easily
possible to obtain closed expressions for both of these estimates, However in,
other problems it is often necessary to determine at least one of them by
numerical solution of equations and this can be time consuming, We therefore
now consider two alternatives to the likelihood-ratio test each of which
involves only one of the estimates #(x) and 8(x).

The W-test

An obvious way of testing a null-hypothesis w that an unknown vector-valued
parameter 8 satisfies the restrictions i) =h0) =.., = h(8) = 0, is to
calculate 8, the unrestricted maximum-likelihood estimate of 8, and base our
decision on the proximity to the zero vector of the vector

h@) = (k@) by B),..., n,@)}.

The W-Test
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. of w? Do we take a spherical neighbourhood, a ‘rectangular’ neighbourhood,

5o that \/nh(f) is approximately N (0, HyBy *H,)..It now becomes natural

This idea was first exploited by Wald (1943). If h(B) is ‘near. enough’ to the
zero vector we accept w and if not we reject it, However what ‘shape’ of
neighbourhood of the zero vector do we take to define an acceptance region

or what? In general the answer to this question is not immediately obvious,
but if we are dealing with large samples a natural choice emerges.

Suppose then that an observation x is a large sample (x,, x,, . . ., x,) from
some distribution. Then, as we know, subject to mild regularity, 8 is, with
6-probability close ‘to 1, near #; moreover Jn(@-0) is approximately
N(0, By *). On expanding the components of h(B) about the true parameter §,
by Taylor’s theorem, we have

h(®) ~ h(6)+H)@H-0),

where H, is the s x r matrix (0h;(8)/36;), and if A(6) = 0, that is, if the true
parameter satisfies the restrictions, then .

h(@) ~ Hy(B-0),

to choose a region within a constant probability contour as a neighbourhood
of the origin for defining an acceptance region for the null-hypothesis ; in other
words to take as rejection region a set of the form

{x:n[h(B()] [HyB; 'He]* [(())] > k.

To the order of approximation to which we are wdrking, 6 may be replaced;
by 0(x) in the above expression, so that, writing 0 instead of 8(x) for typo-
graphical brevity, a natural choice of critical region is '

{x:n[A(®)] [H; B *H] " [h(®)] > &},

and this is the critical region of a W-test. It will be seen that if h(8) = 0, then
the test statistic n[h(8)] [H; Bq * Hy] ™! [k (6)] is distributed approximately as’
x2(r). Therefore the problem of choosing k so that the test has approximate’
size o presents no difficulty, when n is large. .

Note that this test is primarily a large-sample test. It may be applied when
we are not dealing with large samples, but the choice of k which yields an;
approximate size-x test may then be difficult since we cannot appeal to large-
sample theory. Indeed if we are not dealing with a large sample, there is no
obvious reason why a critical region of the shape of that of the W-test should
be chosen in preference to some other.

Example

Let yig, Vizoo ooy Vi i = 1,2,3,4 be independent random samples from|
exponeéntial distributions with unknown scale parameters 8,, 0,, 6;, 4,
respectively. Assuming that n is large, establish the W-test of the hypothesis
that 8,, 6, 6, 6, are in geometric progression.

The Likelihood-Ratio Test and ‘Large-Sample’ Equivalents

Ifwe write x; = (yy;, y,, y3;, ya))

then x; may be regarded as a single observation on a vector-valued ran-
-dom variable whose distribution depends on the vector-valued parameter
6 = (9,, 0,,0;,8,), and X15 X2 .+, X, IS a random sample from this distri-
bution on R*, The density function p*(-, 6) of a ‘single observation’ is given by

4
P*(xj, 0) = 11:11 {91 exP(_eiyij)}:
4 4
sothat log p*(x;,0) = 3 log6,— Y. Oy
i=1 i=1

It is an easy matter to deduce that the information matrix,

o2 log p*

By = | By{ =2

¢ [ ”< 36,00, ) |’
is in this case the diagonal matrix
dia 1111

Sl aal

Moreover the likelihood function p(x, B)corresponding to the random sample
X = (X1, X3,...,%,)is : '
p(x, 0) = l;[ H {6 exp (’GtYij)}

from which it is clear that unrestricted maximum-likelihood estimates of the
8;s are given by
éi = y: 1’
where ny,. =3y, (i=123,4).
ST

The hypothesis to be tested states that the 0;s satisfy the restrictions
9, 65 0, '

or, equivalently, h(§) = 0,

where h(f) = ,:9%—&03 .
62-0,0,

Thus in this case the matrix Hj of our general discussion is

H;=[—& 26, -0, 07,
0 -6, 20, -9,

. The W-Test




it , . -
g 4 where D7 log p(x, 6) is the matrix

:? and HiBj'H;=| 2 2 _ 22 o

| V2. Yy, YaV2. yry3 0 log p(x, 0)

:;; 1 2 2 4 00,66, P |

——————— e -——_._-{_——_
i 3 3 2 .2 4
Yere iy yiyeo )4 Now if § emerges as a solution of the likelihood equations, then

i Final calculation of the test statistic is now a matter of substitution in the Dy log p(x, 8) = 0.
:l : general formula and this is left to the reader, ; Also. b t alread din 1 I . likelihood
| This example illustrates the point that while a W-test is a large-sample %0, by an argument already used in arge-sample maximum-likelihoo

theory, D} log p(x, §) ~ —nB;,
sothat Dy log p(x, 6) > nBs(d—4).

equivalent of a likelihood-ratio test, it may involve considerably less com-
| putation. Here calculation of restricted maximum-likelihood estimates would
ae involve considerable work, whereas the unrestricted estimates are easy to ]

1

calculate. Let  x* = ~[Dylog p(x, ) By [, log p(x, 6)].

: n

i

i 1
A3 7.4 The ¥ test Then y? ~ - [Ds log p(x, 6)]' Bs ! [Dy log p(x, )]
g / In other problems of the general nature under discussion, it is relatively easy = - 9)’BA(9_9) .
i to compute restricted estimates, and it is therefore desirable to have a test | ¢
; ‘ based solely on restricted estimates as an alternative to the likelihood-ratio ‘ > 2log 4, .

il test. The so-called chi-squared test provides such an alternative, for large . by the argument of section 7.2.2, where 1 is the likelihood-ratio test statistic,
bl samples. When the hypothesis under test is true, the statistic y? is therefore a large-
: sample approximation to 2 log 4, an approximation which depends only on the

|
] E 74.1 The general problem is as before: we have avilable a large sample from a ]
bl distribution which is known apart from the value of a vector-valued parameter ;
6, and we wish to test a hypothesis which states that this parameter satisfies
certain restrictions, which we represent in canonical form by h(6) = 0, though §
in practice they may be specified in terms of freedom equations. The idea |
underlying the y*-test is this: if the hypothesis is true then a restricted maxi- |
mum-likelihood estimate of § will tend to be very near an unrestricted M.LE,
for large samples, and consequently, if we assume regularity of the log-
likelihood function, the partial derivatives of this function at the restricted !
i maximum will tend to be small. If on the other hand the hypothesis s false there
‘ is no obvious reason for these partial derivatives to be small, Hence we may
|

unrestricted M.L.E. 4. Consequently if we are going to base a test on the
proximity to zero of D, log p(x, ), it is natural to choose as critical region of
this test

{xu? > &},

and such a test is called a 2 test.
The relationship between the powers of a size-y chi-squared test and a

have approximately the same power function for large samples (Silvey, 1959),
and so for most practical purposes they are large-sample equivalents of one
another. We may choose that which is most convenient from a computational
point of view.

use the proximity to the zero-vector of the vector
| 8
b Dy log p(x, §) = [ﬁ log p(x, 9)],

as a means of deciding between the truth or falseness of the hypothesis to be |

tested. Again it is not quite clear what metric we should use, but for large the sample space in such a way that 8 s not identifiable without restrictions
samples a natural choice emerges. A - Then it is usually the case that B, is singular. The statistic of the chi-squared

On expanding D, log p(x, §) about &, we have, assuming that the true test involves By ! so that apparently it is undefined when B is singular. This
parameter satisfies the restrictions, so that § and @ are probably close to one is a purely technical problem which we can always overcome by repara-

i another when n is large,
i

: metrization, but it is not even niecessary to do this, A simple adjustment to the
Dylogp(x, 6) ~ D, log pCx, 0)+[D2 log p(x, )] (@—9), . ‘ statistic takes care of this contingency, and at the same time preserves the
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symmetry which is usually the cause of the difficulty. Suppose that 8 is not]
identifiable without restrictions and that, of the restrictions

b)) = k) =...=h(8) =0,

the first ¢ are just sufficient to make 8 identifiable. Then we need only repla
By by Bs+H,eH{, as in section 4.7.5 in order to define the chi-squart
statistic which then becomes

) |
1= ;. [Dolog plx, 0)) [Bi+ HigHi] ™ [Do log p(x, 6)],

and which is distributed, when the null-hypothesis is true, as y2(r— 0.

When the family of possible distributions on the sample space is multinomial,
the statistic of a chi-squared test reduces to a simple intuitively appealing form
and possibly partly for this reason, the multinomial family of distributions’
provides the richest source of applications of the chi-squared test. We shall
content ourselves here with a statement of the result which the interested
reader may derive for himself from the general expression given above,
Suppose that each individual in a very large population belongs to exactly
one of s classes and that the proportions 8y, 8,, . . ., 6, of individuals in these
classes are unknown. We have available a large random sample of n in-
_dividualsand n,, n,, ..., n, of these fall respectively into the classes 1, 2, ..., 5,
where ny+n,+ ... +n,=n If x = (n, ny,...,n) the likelihood function
is then defined by

n!

5

[T67, where Y 6, =1.

p(x,0) = ———
’  PRE PRI R et i=1

Suppose now that we wish to test whether the ;s satisfy the additional (r— 1)
restrictions

h1(91, 92, ey 05) = h2(91, 62, PR ,ﬂs) = ... ='h,._1(91, 92, ey 03) = 0
To apply a chi-squared test we calculate restricted M.L.Es, 6,,6,,...,0, of
81,0, ..., 6, respectively and the test statistic reduces to
2 _ (ni_'néi)2
nd;,

j=1

or, as it is sometimes expressed,

’

5 Z (observed — expected)?
= expected
the expected numbers in the various classes being calculated as if the restricted

estimates of the 6;s were the true values of these parameters. When the null-
hypothesis is true this statistic is distributed approximately as y(r—1) and

The Likelihood-Ratio Test and ‘Large-Sample’ Equivalents

this result enables us easily to determine a test which is approximately similar
size «, namely the test with critical region ‘

{x:x® > k,},

where k, is the upper 100« per cent point of a x*(r—1) distribution,

Examples

Let x;, x5,..., x, be a random sample from a N(u, ¢2) distribution with u
and ¢% unknown. Show that a likelihood-ratio test of the null-hypothesis that
0 = g, against the alternative that ¢ + 6, has an acceptance region of the
form

s?

{(xla Xgsee s Xp)1hy € = < kz},

a3
where s* = ¥ (x,—%)*/n; and explain how k 1 and k, are determined to make
the test of size a.

Let x4, x5,..., X, and y,, y5,...,y, be independent random samples from
two exponential distributions with unknown scale parameters A and u respec-
tively. Show that the critical region of a likelihood-ratio test of the null-
hypothesis that A = y against the alternative that 1 # p depends only on the
ratio j/X. Explain how to make the test of size «.

An experiment has N+ 1 possible outcomes 29, Z3, . . . Zy. A null-hypothesis
H, assigns probabilities to these as follows:

.
P(ZO)=21' P(zi)='2'~ﬁ (121’2’---’N)-
A composite alternative H, assigns probability (N — 1)/N to z, and does not
specify the probabilities of zy, z,, . . . zy. Show that the size-4 likelihood-ratio
test of H,, against H,, based on a single observation, accepts Hy if and only if
the observation is z,. What is the power of this test? Is it a ‘good” test?

Let x = (x4, X5,..., x,) be a random sample from an N (u, ¢?) distribution,
where 4 and ¢* are unknown, and let H, be the hypothesis that u = p,. If
A(x) is the likelihood-ratio statistic for testing Hy against the alternative that
U # lo, show that

2log A(x) = n log [1 + "(2"“°)2]

Z (=XP [
Determine the characteristic function of 2 log A(x) when H, is true, and verify

that as n — oo, the distribution of 2 log A(x) tends to x> with one degree of
freedom. Check the steps of Theorem 7.2.2 in terms of this example.

Examples
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Sets of independent trials are conducted on k different occasions, the trials in
each set being continued until an event E has occurred exactly r times. For the
ith set, the probability of occurrence of E at each trial is 0;, and the total number
of trials is nli=1,2,...,k). The different sets of trials are mutually in-
dependent. Show that the statistic

Zk: lo i +{n;~r) lo [ni~r]}
‘ n; g n; i g A—r s

i=1
where 7 = Zn,-/k, may be used to provide a test of the hypothesis that -
6y = 0, = ... = 6, against the alternative that not all the §;s are equal, and

that this test is approximately similar when r is large. (Camb. Dip.) ‘

If, in example 7.5, the principle underlying the chi-squared test is used to test
the hypothesis that 8, = 9, = ... = 6. show that the test statistic which |
emerges is

k b
r a2 ’.
Fz(ﬁ-—r);(n‘ A \~

Let ry, 7y, ..., 1, be the numbers of occurrences of an event E in & sets of n
independent trials. Derive the chi-squared statistic for testing the hypothesis
that the probability of occurrence of E at each trial is the same, against the -
alternative that this probability is constant for any set but may vary from set
to set. Verify the theory of the chi-squared test for this example.

Derive the chi-squared statistic for testing the hypothesis of no association (
in a contingency table (see section 7.1.3), ‘

&

Let x4, x5,..., x, be a large randoni sample from an N(y, 6%) distribution ]
where u and o2 are unknown. Verify the theory underlying the Wald test by 1
considering the problem of testing the hypothesis that u = ¢2. :
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The methods of testing hypotheses which we have discussed in chapter 7 are
appropriate for answering the question, ‘Do we have sufficient evidence to
conclude that such-and-such a hypothesis is false?” That is to say, while the
Neyman-Pearson theory formulates the problem underlying these methods
as one of deciding between two hypotheses, we do not really apply these
methods to reach one of the two conclusions ‘w is true’ or ‘@ — g is true’. Their
application leads to one of the slightly weaker conclusions ‘we have sufficient
evidence to reject ’ or ‘we do not have sufficient evidence to reject «’, The
latter conclusion does not imply a conviction that e is true, for it may well be
that the power of the test we have used is small, that is, that the minimum
probability of observing a point in the accept- region of the test is consider-
able when @ - is true; and this not because we have used an inefficient
method, but because the observation we have made is not all that informative,
Now in some circumstances we do wish to make a definite decision regarding
which of two hypotheses is true, and this may be ‘interpreted as a desire to set
a lower limit on the power of a test as well as to control its size, that is, to
control both error probabilities,

As we have already seen it is not possible to control both error probability
functions arbitrarily with a given experimental design. If therefore we wish
such control it is hecessary to plan ahead and to choose a design which is
informative enough to admit the desired control. To take a somewhat trivial
illustration, suppose that we are interested in the probability 6 of success in
identical independent trials; and that  is known to have one of the two
values 8, 8,. As a result of observation of the results of a number of trials, we
wish to decide which of the two hypotheses {6, } and {6} is true and we further
wish to be fairly confident that the decision we reach, whatever this may be,
is correct. This implies that we wish to ensure, in Neyman-Pearson terms, that
the probability of each of the possible errors we may make is no more than
some preassigned small number, say 0-01. With these requirements there is
little point in arbitrarily saying that we will observe the results of six trials and
base our decision on this observation. For it may well be not informative
enough to enable us to make our decision with the required degree of con-
fidence. For instance suppose that 6, = 0-4and 6, = 06, It is clear on intuitive
grounds, as well as a result of the fundamental lemma, that our best possible
choice of region for accepting {6} is of the form ‘number of successes greater

Sequential Tests
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than or equal to k’. If we observe the results of only six trials, then, to make the
probability of deciding {6,} when {6,} is true less than 0:01, we cannot take
k less than 6; but if k = 6 then the probability of deciding {6, } when {6,}is
true is approximately 095 — considerably more than 0-01! Hence it is necessary
to think beforehand about our experimental design, that is, in this case, about
the number of trials whose results we propose to observe.

Continuing with this particular illustration we may proceed as follows. For
each number n of trials observed we might calculate the power of the most-|
powerful test of significance level 0-01 of the null-hypothesis {8, } against the
alternative {8,}. This power will increase with n. We then choose the smallest:
value of n for which the power is greater than or equal to 0-99 as the number:
of trials whose results we are going to observe. Such a design would certainlyi
achieve the desired control of error probabilities. -

However when we start thinking in terms of preliminary experimenta
planning with the control of error probabilities in mind, another possibility
arises which we have not as yet considered. If observations can be made
sequentially, as in our particular illustration, why should we fix in advance
the number of observations to be made? Why not, as each observation is taken,
look at the results to date to see if as yet we have enough information to enable.
us to decide between the two hypotheses concerned? If we have, then we
reach the appropriate decision without taking any more observations; if we
have not, then we take another observation and go through the same proce-
dure. In many ways this is a far more natural procedure than that of fixing in
advance the number of observations to be made. It is more in line with the
way that a scientist without formal statistical knowledge would proceed. With-
out formal analysis, however, the assessment of when sufficient information
has been obtained to decide between the two hypotheses must be intuitive,
and this can be dangerous. Statistical theory enables us to make this assess-
ment on an objective basis and we shall now discuss the theory of one proce-
dure where the number of observations to be taken is not fixed in advance, a
so-called sequential procedure.

Definition of a sequential probability ratio test

Let {x,:n = 1,2,3,...} be a stochastic process describing some real system
which can be observed. The random variables of this process may be in-
dependent and identically distributed, as for instance when the process is
describing a sequence of independent trials; they may be independent without
being identically distributed, as for example, when x, = a+ ft,+¢,, where
{e.:n=1,2,...} is a process of independent identically distributed random
variables ; a model appropriate for describing a real system in which a purely
random component is superimposed on a variable increasing linearly with
time; or the x,s may be dependent, as for instance, if the process is describing,
say, gross national income over the years. We shall start by supposing that the
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probabilistic structure of this process is known to be one of two possible
structures which are defined by the respective sequences of density functions
a1, X500y x)in = 1,2, 3,.. . }and {g,(xy, x5, ..., x)in = 1,2,3...}
Thus we have two simple hypotheses 2 and 2, say, regarding the true proba-
bilistic structure describing the real system which we can observe. Suppose
that we can observe this system sequentially and that we wish to do so with a
view to deciding between 2 and 2; and that further we wish to ensure that
both error probabilities are controlled at preassigned levels, say, that
Pr {deciding 2|2} < « and Pr {deciding 2|2} < B. From a practical point
of view our assumption that we have merely to decide between two simple
hypotheses may appear somewhat limiting, but this is a natural theoretical
starting point.

One intuitively appealing way-of proceeding is to go on taking observations
until the probability, under one of the hypotheses, of the observations made,
is large enough relative to their probability under the other. Formally we
choose two constants 4 < 1and B > 1, We now make an observation x,. If

A< ‘11(X1)< B

Pi(xy) ’
then we conclude that this observation does not provide enough information
to enable us to decide between 2 and 2;if g1 (x1)/py (x1) < A4 we decide that
2 is true and stop observation; if ¢, (%1)/p1(x1) = B we decide that 2 is true
and stop observation. We continue to take observations in this way until either
A= q,(xy, X, .. ., Xn)/Pn(X1, X3, . . ., X,) < A, in which case we decide that
2 istrue or 4, > B in which case we decide that 2 is true.
Such a procedure is called a sequential probability ratio test, (s.p.r. test).

Error probabilities and the constants 4 and B

The main analytic problem connected with an s.p.r. test is that of relating the
test constants A and B to its error probabilities. As indicated above, in practice
we will be given upper limits to the error probabilities and will wish to choose
A and B so that actual error probabilities are within these preassigned limits,
Moreover, since taking observations can be costly, we will wish to choose A
and B in an economic way, or more formally in such a way that the expected
number of observations to be taken before a decision is reached, either when
2 is true or when 2 is true, is minimized if this is possible. It can be shown by
a rather difficult proof (Lehmann, 1959, p. 98), that among all procedures
satisfying

Pr{deciding 2|2}
and Pr{deciding 2|2}

o
ﬂs

the s.p.r. test for which these probabilities are respectively equal to « and f is
most economic in this sense. In general, however, the determination of 4 and B

<
3
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to make these error probabilities exactly o« and § respectively for the S.p.r. test
is extremely difficult. Fortunately it is easy to obtain values of 4 and B for
which the error probabilities are in most cases approximately o and §; and
this is done as follows. .

Consider the s.p.r. test which uses the numbers 4 and B. Let its error proba-
bilities be «’ and f". All sets (x,, x,, . . ., ) of observations which lead to the
decision 2 are at least B times more probable when 2 is true than when 2 is
true. By ‘integrating g(x,, x,,. .., x,) over all such sets of observations’ we
obtain Pr{deciding 2|2}. By integrating p(x,, x,, . .., x,) over the same sets,
we obtain Pr{deciding 2|2}.

Therefore  Pr{deciding 2|2} > B Pr{deciding 2|2}.
Now Pr{deciding 2|2} = «..

Suppose that the s.p.r. test is such that, when 2 is true, with probability 1, it
terminates after a finite number of observations. Then

Pr{deciding 2|2} = 18",

Hence 1-p' > Ba/,

l— 1
or B g B.

[

>4

Similarly if we assume that when 2 is true the S.p.r. test terminates after a
finite number of observations with probability 1, we have

B

l—o

Az .

We now examine these inequalities to see how sharp they are. The only
reason why the first is an inequality rather than an equality is the fact that the
decision ‘2 is true’ may be reached with Ax > Brather than 4, = B; in other
words, that the likelihood ratio ‘overshoots the boundary’ at B. If with proba-
bility near 1, this overshoot is small, then B will be approximately equal to
(1-B')/e". Suppose for instance that the decision ‘2 is true’ is always reached
with 4, < B+4. Then we should have '

-

o

< B+4.

In most practical cases this tends to happen; the likelihood ratio ‘creeps up’
on the boundary at B and when it crosses it, the overshoot‘ is small. This i
because usually each successive observation provides only a little informatio
for discriminating between 2 and 2. Of course it is possible to construc
examples where the likelihood ratio suddenly leaps far over the boundary an
the reader may find it instructive to do so." However, more commonly i
practice, the inequality B < (1—8")/«’ is indeed very nearly an equality!
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and obviously. for the same reason, the same applies to the inequality
4 =2 p'/1~a’). This suggests that if we wish to construct a S.p.r. test with
error probabilities approximately « and f then we should take A= pll-q)
and B = (1—B)/a. That this is not merely a speculative result has been con-
firmed in practice by extensive numerical calculations in particular cases, so
that it is now a well-established practical method.

We assumed, in establishing these inequalities that the S.p.r. test concerned
terminates with probability 1, that is; that the probability is zero that we goon
taking observations for ever without reaching a decision. It is not difficult to
prove that this assumption is valid if the sequence (x,) is one of independent
identically distributed random variables under either hypothesis,

sothat p,(x, x5,..., x,) = Hl plx;)

and qn(xl’ X2s ey n) = II q(xi): say,
i=

where the distributions defined by the density functions P and g are essentially
different. This we leave to the reader as an example on the strong law of large
numbers, an example which uses also a result which we established in section
4.4. While the case of independent, identically distributed random variables is
one of great practical importance, the assumption of termination with proba-
bility 1 has considerably wider validity. It is difficult to introduce an interesting
theorem of sufficient generality to cover this point, though it is easy enough
to see why the assumption can fail, If, eventually, successive observations
provide little additional information for discriminating between 2 and 2 then
the likelihood ratio 4, can stay more or less fixed for ever and fail to reach one
of the boundaries 4 and B. This can happen for instance, if, for some integer

m the conditional distributions of X+ 10 Xt 25 -« GIVEN X1, X, . . ., X, are the
same under both 2 and 2. The observation of X+ 19 Xt 2, . . . gives no dis-
crimatory information additional to that given by x,, x,, ..., X, in other

words A, = Apyy = Apyy = -+« 80 that if we have not reached a boundary
by the mth observation we can never do so. Usually this danger will be
apparent in practice, but it is worth remembering whenever an s.p.r. test is
applied in a situation where successive observations are dependent.

Graphical procedure for an S.p.r. test

It sometimes happens that the S.p.rI. test can be reduced to a graphical proce-
dure which is extremely easy to apply. Consider, for example, the problem of
determining whether the probability of success in independent identical trials
is 8, {the hypothesis &) or 8, (the hypothesis 2). We may take the sequence
(x,) to be one of independent random variables each of which takes the values
Oand 1.

Graphical Procedure for an s.p.r, Test




O3 (1- 6,y
Then A,, = W .

Now A < 1, < Biff log4 < log4, < log B,

1—62

6
ie.iff logd < X, 1og51+(n—xn) log —5* < log B,
1 -y :
1~8, 0,(1—6,) 1-8,
- < X, log ——— < log B—n log .
or log A4 nlogl_e1 g01(1—92) g =0,
Suppose that 6; > 8,.
6,(1-6,) 6,(1-6,)
-———>1 and log-———=>0, '
Then 5 =0y 25,10 !
decide 6,
>
é continuation region
3
2
g
=t
=
0 1 2 3 4 5 6 T n
decide

Figure 5 Graphical procedure for an s.p.r. test to decide between two
possible probabilities for each of a sequence of independent trials
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In this case the s.p.r. test using the censtants 4 and B continues so long as

a+cn < X, < b+cn,

where g = log 4 b = log &
~ log [0,(1—6,)/{6;,(1-6,)}] = Tog [B,(1=6,/46,(1 -6,)}]
and log [(1-8,)/(1-6))]

log[6,(1=6)/{6,(1-6,)}]

The test terminates with the decision ‘2 is true’ if these inequalities are first
violated by X, < a+cn, and with the decision ‘2 is true’ if the first violation
is by X, > b+cn. By plotting X, against n in a graph containing the lines
X.=a+cn and X, = b+cn we arrive at the simple graphical procedure
promised. This is illustrated in Figure 5. Note that X « is simply the total
number of successes in the first » trials and that the common slope and relative
positions of the two lines follow from our assumption that 6, > 6,. The
change to be made if 6, < 6, is bound up with the fact that then

6,(1— 91)}
log {—————— <0
0,(1-6,)
so that inequality signs have to be changed on division by this quantity.
Finally we note that if upper limits « and B to error probabilities are pre-

assigned rather than the numbers 4 and B, then we obtain a test whose error
probabilities are approximately « and B by taking

1-8

Composite hypotheses

It is seldom in practice that one is faced with a problem of testing one simple
hypothesis against another. More often than not each hypothesis is composite
and, not surprisingly, the problem of sequential tests between two composite
hypotheses is more severe than that which we have been discussing, The formal
extension of the latter problem is this: the probabilistic structure of a stochastic
process (x,) is labelled by a parameter 0 ranging over the parameter space ©,
and we wish to establish a procedure for deciding between two composite
hypotheses w and ® —w, this procedure to have the properties '

Py{deciding ®—w} <« forallfew
and Pg{deciding w} <p forallfe®@—w.

That is, we wish a test which controls both error probabilities.

It may well be that this problem is insoluble, Consider, for instance, the
problem of deciding whether the probability 6 of success in a sequence of
independent identical trials is such that 8 < 6 or that 6 > 6. If both « and B

Composite Hypotheses
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are less than a half, as of course they usually will be, then there is certainly noj
fixed sample size procedure which controls the probabilities of error as we
wish. Such a procedure, based on the results of N trials, divides the possible!
results into two sets, an ‘accept § < 6, set’, Ao, say and its complement A,
the ‘accept 6 > 8, set’; and, to meet our demands, these sets must be such that

Py(Ab) < a forall§ < 6,
and Py(Ay) < B foralld > Bo.

In particular Py,(A5) < o and 5o Pe,(Ag) > 1~a > 4, if« < 4 Now Py(Ao)]
is a continuous function of @ and so there exists a 8 > 6, such that Py(Ay) > 14
This conflicts with the demand that Py(Ao) < Bforall 8 > 6,,if B < 3. Thu

a procedure for deciding between two hypotheses of the nature stated. )

Weillustrate one possible line of argument by referring again to the problem3
of testing whether 6 < 8, or 6 > B0, 6 being the probability of success in each’
of a sequence of independent trials, If we look at the consequences of wrongy
decisions it may be that we can find two numbers 6; < 6, and 6, > 6, suchg
that the error of deciding that § > 6o, when in fact §, < 8 < 8o, is not all;
that serious, and the error of deciding that § < 8,, when in fact 6o < 6 <8y,
is not serious either. In other words, if 6, < 6 < 0, it is immaterial whether
we decide that 6 < 6, or that > 6. Then we may set out to construct a test
between the hypotheses w, = {6:0<6,} and w, = {6:0 = 6,} with pre-
assigned upper limits to the probabilities of error. In this way we control the
probabilities of ‘serious’ errors and allow less serious errors to take care of
themselves. This is in line with the Neyman-Pearson analysis in which Typel
error is regarded as more serious than the Type IT and in a sense it carries this
analysis one stage further. (It may appear to the reader that this further stage
still leaves the analysis incomplete ; we shall return to this point later.)

Monotone likeliheod ratio and the S.p.r. test

Suppose that in the meantime we adopt this point of view. Then in the par-|
ticular case of testing between w 1 and w, above, it is plausible that the S.pI..
test with error probabilities « and # between the simple hypotheses {0, } and
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{0} has the properties:

Py{deciding 6,} < « for all § < 91}
=6,

<
=

.y 8.1
and Pp{deciding ,} < B forall 6 6

This is true, as well as plausible, and the general result of which it is a particular
case is as follows, :

Suppose that the stochastic process (x,) is one of independent identically
distributed random variables whose common probability density function Do
depends on a real parameter 0; and that the family {p,} of densities has
monotone likelihood ratio, that is, for § > @ the ratio pg-(x;)/p, (x;) is a non-
decreasing function of some statistic t(x;). Then the s.p.r, test between {6,}and
{6,} (8, < 8,) with error probabilities « and § has the properties 8.1 above,
We can therefore use this procedure in the obvious way as a sequential proce-
dure for deciding between the hypotheses

o, = {6:0 < 6,)
and @, = {0:0 > 9,},

and thereby satisfy preassigned upper limits to the probabilities of wrong
decisions, _

This result has been proved by Lehmann (1959), p- 101, and we refer the
reader to his proof,

In very particular circumstances we now have a practical sequential pro-
cedure for deciding between two composite hypotheses, w, and ,. Before
going on to discuss what can be done when these circumstances do not obtain,
we shall consider some problems concerned with the particular case, To be
specific, (x,) is a process of independent identically distributed random vari-
ables; the family of possible distributions of each x; is labelled by a real para-
meter 6, and defined by a family {p,}- of density functions with monotone Jikeli-
hood ratio ; we continue to observe the stochastic process (x,) so long as

% Po, (%)) .
A= iI—:Il Pe, (x;) < B
if these inequalities are first violated by the central ratio taking a value less
than or equal to 4, we decide that 8 < 0y; if by its taking a value greater than
or equal to B, we decide that 9 > 6,. This procedure has the properties that

P, {deciding 6 > 0:} < Py, {deciding 8 > 6,} forallg <9,
and  P,{deciding 6 < 6,} < Py, {deciding 6 < 0;} forallg >,

As we have seen, by taking 4 = /(1 —a), and B = (1—B)/a, we can ensure
that, approximately,

Py, {deciding > 6,} =
0:} =

o
and Py, {deciding § < B.

Monotone Likelihood Ratio and the s.b.r. Test
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The number n of observations required by this procedure before a decision
is reached is a random variable whose distribution depends on the parameter
6. In particular the expected number Eq(n) of observations required is a
function of 8 which may be of interest to the experimeter ; in addition he may
be interested in knowing the exact value of Py {deciding 6 > 0,} for various
values of 6. Answers to these questions can be provided by exploiting the
theory of random walks with two absorbing barriers and in particular by
using Wald's identity. (Familiarity with this theory is assumed in what follows.
An excellent account of it is given by Cox and Miller, 1965.) To see this, con-
sider the sequential procedure adopted. Observation continues so long as

< H Do, (x:) <B

i=1 Pa, (x;) '
or,equivalently, log4 < ¥ y, < logB,
i=1

where y, = log ELZ(—{L)
Do, (x;)

Since x,, x,, ... are independent and identically distributed, so are y,, y,, ...
Therefore we are dealing essentially with a random walk, starting at 0, and
having absorbing barriers at g = logA <Oandb = logB> 0, Absorption
at a means that the decision 6 < 8, is reached; absorption at b implies the
decision 6 > 6,. The theory of random walks therefore becomes relevant,

Let n denote the number of observations required to reach a decision, and let
¢ (2) be the moment-generating function of each i (This depends on the true
parameter 6.) Wald’s identity states that

E{[¢@] e} = 1,

where Y, = y,+y,+ ... +y, This identity is valid for all values of z except
possibly that at which the convex function ¢(2) takes its minimum value. In
particular it is valid for the two values of z,z = 0 and z = z,, say, for which
@(z) = 1, so that we have - :

E{en?r) = 1,

This may be written

P,Eg(e"")+ Py Ey(e™) = 1, -

where P, denotes the probability of absorption at a (the decision 8 < 8,) and
E, denotes expectation conditional on absorption at g, and similarly for P,
and E,. Now given absorption at g, ¥, takes values in the range ¥, < a. If we
neglect overshoot of the barrier, then, given absorption at a4, Y, = a; and
similarly, neglecting overshoot, given absorption at b, Y, = b. As we have

seen, for the s.p.r. test, overshoot is probably very small. Therefore, approxi-
mately,

P+ Pyttt = |,
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Moreover, absorption at one or other barrier is certain so that
P"+ Pb - 1.

These equations may be solved to gi\;e approximations to P, and P,,
Differentiation of Wald’s identity with respect to z, and substitution of the
value 0 for z, yields the result that

E(Y,)

" Efeach )

provided E(each y;) # 0. If again we neglect overshoot of the barriers, Y,
takes only two'values, a with probability P,, and b with probability Py, and so

aP +bP,
Elm ~ E(each y,)’

If E(each y,) = 0, then it can be shown by differentiating Wald’s identity twice
with respect to z, and substituting 0 for z, that

E(Y?)

E() = ——""

"= Flleach y7]
Now in this case — when E(y;) = 0 - the equation ¢(z) = 1 has the repeated
root z = 1, so that the above method for determining approximations to P,
and P, breaks down. Further analysis shows that P, is then approximately
b/(b~a), while P, is approximately —a/(b—a), so that
a’b  ba _ —ab
b—a b-a b-a

ab
(b—a)E{(each y,)*}’

E(Y?) ~

and E(n) ~

Example

From observations of the results of independent identical trials it is desired to
test sequentially whether 6 < 6, or 8 > 8,, 0 being the common probability
of success. The test is required to have the properties that

Py{deciding 6 > 6,} < o forall§ < 0,
and P,{deciding 6 < 6,} < B forall§ > 0,,

6, and 6, being numbers such that 0 < 6; < 8, < 1. Accordingly boundaries
on the number of successes are determined by the s.p.r. test between {6:} and
{6,} having approximate error probabilities ¢ and B. The experimenter wishes
to know ‘how many observations will be required by this procedure and what
its error probabilities are’. What answers can be given to these questions?
The procedure used may be described as follows in order to exhibit the

Monotone Likelihood Ratio and the s.p.r. Test
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relevance of the random walk theory just stated, If the ith trial results in
success, set y; = log(6,/6,); if in failure, set y, = log{(1-8,)/(1-8,)}. After
mtrials (m = 1, 2, .. .) calculate

Yo=yi+y+ .. +y,.
1-8

o

Solongas a = long—% <Y,<log = b,

carry out another trial. Suppose that these inequalities are first violated when
m = n. Thenif Y, < a, decide that § < 0o;if Y, > b decide that § > 8. This -
actual procedure, of course, does not depend on the true value of the proba-
bility of success, but its properties do so depend. Suppose that the true proba-
bility of success is . Then the sequence (Y,,), with Y, defined to be 0, is a
random walk starting at 0, having absorbing barriersata < Qand b > 0,and
each of the increment random variables, y,, takes the values

1og% with probability 8
1

1-6,
1-6,
It is in the probabilities with which each increment takes its two possible

values that the true probability of success enters the picture. When this proba-
bility is 6, the moment-generating function ¢(z) of each y, is

and log with probability 16,

@(z) = Gexp zloggﬁ +(1—68)exp zloglﬁez]
A 1-8,

_ o[0T, . o [1=6F
-ols] o=

For any particular value of § we may solve numerically the equation ¢ (z) = 1
in order to determine the value of z, corresponding to this 6, and then the
general formulae of this section with g = log f/(1—a) and b = log (1 - B)/x
may be used to calculate the probabilities of the two possible decisions asso-
ciated with this value of 8; and also Ey(n).

The detailed calculation involved here is often more than is necessary to
answer the experimenter’s questions for, as often as not, he is interested only
in obtaining a rough idea of, for example, Eq(n). This can be gained by deter-
mining E, (n) for several particular values of 8 for which the calculation is easy:
these values are 6 = 0, 1, 8,, 6, and that value of 8 for which E(y,) = 0,

~log {(1-6,)/(1 —8,)}
log[0,(1-6,)/{6,(1-6,)}]

namely 6 =

. a
Obviously E,(n) = [log {(1-0,)/(1 - 91)}]+ :

Sequential Tests

8.54

135

b
and E\(n) = [————-]+ 1,
! log(6,/6,)
where [c] denotes the greatest integer smaller than c, for in either case the
random walk is no longer random; it is deterministic, rather.
If6 = 0y, then z, = 1, and we have

Pe+Pyeb ~ 1
P,+P, =1

4

e—1 {(1=B)fa} -1
sothat P, ~ = =
e~ {(1-B)a}~p/(1—a)

a result which of course is obvious but whose derivation by this method is of
some interest,

|

(1—a) log {B/(1 ~ o)} + alog {(1 - )/}

01 log (8,/0,)+(1~6,) log {(1-0,)/(1 - 6,)}
B log {B/(1~a)} +(1 - ) log {(1 ~ B)/ar}

0, log (8,/6,)+(1-6,) log {(1-6,)/(1-6,)}

. _ _—log{(1-6,)/(1~6,)} _ o%
Finally, when 6 = o {02(1__01)/01(1_02)} = @*,

Hence Eq (n) ~

Similarly E,,(n) ~

say.

Egt(n)
~ Zlog{pd—e)""} log {(1~B)a~*}/[log {(1 — f)a™*} — log {B(1— o)~ '
- 0* {og (8,/6,)}* +(1 - 6*)[log {(1- 6,)/(1 - 6,)} 7 '

These five values of the function Eq(n) of @ are enough to enable us to sketch
the graph of this function, which has a maximum at 6% Graphs of error
probability functions can be drawn similarly and the experimenter’s questions
are answered by these graphs.

The procedure which we have been discussing is applicable generally in the
circumstances described in section 8.5.2 and so we have a method for dealing
with an important class of practical problems. However, looked at from the
general point of view of sequential tests between two composite hypotheses,
the circumstances (a single unknown parameter, monotone likelihood ratio,
etc.) are very particular indeed, and the general problem remains, That is, we
have no general method of constructing tests between composite hypotheses.
Moreover there are difficult problems involved in discussing properties, such
as error probability functions and expected number functions of particular
sequential tests when we cannot appeal to random walk theory. Certain addi-
tional more complex practical problems can be reduced to the monotone
likelihood-ratio form by invoking the principle of invariance, see Cox (1952);
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and Wald (1947) suggests a method of tackling the general problem. (Incident-
ally this book by Wald contains an excellent discussion of the s.p.r, test.) How-
ever further development of the theory of sequential tests is contained withinj
decision theory which we shall discuss in chapter 11. ;
Finally it should be noted that we have not demonstrated that the particular.ﬂ
procedure described in section 8.5.1 is optimal in any way. It is a procedure
which happens, in special circumstances, to control érror probabilities as we!
wish to control them, but we have not shown, for example, that among all
procedures which control error probabilities in this way, this particular one
uniforraly minimizes E, (n), regarded as a function of 6. Indeed it is known
(see Lehmann, 1959, p. 102) that it does not do so in general. Alternative pri
cedures are available in the special circumstances of monotone likelihood

these so-called closed sequential designs, the reader is. referred to Armitage?
(1960). Another useful book on sequential tests is by Wetherill (1966).

Examples

Observations x,, x,, .. . , x, form a random sample from a normal distribution
with variance | and unknown mean . What is the minimum value of 1 for’
which it is possible to find a region R in the sample space such that

P(R|6 = 0) = 005
and PR = 1) = 0957

In a sampling scheme to control the quality of bricks, random samples of size n
were taken from each load, which was accepted as satisfactory or rejected
accordingas X < korX > k, where X is the mean specific gravity of the bricks |
in the sample, and & is a constant, It was desired that if 0, the mean specific |
gravity of a load, exceeded 2:42 the probability of its rejection should be at |
least 099, while if 6 < 2:38, the probability of its acceptance should be at |
least 0-95. The standard deviation of specific gravity of the individual bricks
in a load could be taken as 0-03. Assuming that » is small compared with the
number of bricks in a load and that the distribution of ¥ is normal, find the
least value of n satisfying these requirements. "

Let xy, x5, ... be a sequence of independent, identically distributed random
variables and let H, and H, be two simple hypotheses concerning the distri-
bution of each x;. In each of the following cases, construct a simple graphical
procedure for applying a sequential probability ratio test between Hyand H,
having both error probabilities approximately equal to 0-05.

(a) Hy: each x,is N(0, 1); H,:each x;is N(2, 1).

(b) Ho: each x; has density e~ * (x > 0); H, : each x; has density 2¢™ 2% (x > (),
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(c) Hy: each x; is Poisson with mean $; H, : each x; is Poisson with mean 1.

found to be unlabelled, though it is known to consist of components of the
same quality. Since differences in quality cannot be detected visually, it is
proposed to measure lifetimes of components sequentially until a decision on
quality can be reached,

Suppose that there are Preassigned upper limits & and B to the probabilities
of wrong decisions. Derive an appropriate procedure for the manufacturer and
show how it may be carried out graphicaily.

If the manufacturer asks how long he is likely to have to wait before a
decision is reached, what answer would you give?

Suppose that the components in the batch tested do not in fact belong to
either of types 1 and 2 and that their lifetimes in hours are distributed with
density A%xe™*, Let P, be the probability of deciding, according to the above
procedure withe = g = 0-01, that they are of quality 2, Sketch the graphof P,

Also sketch the graph of £ 1 the expected number of observations required for
a decision,

Independent observations x 1> X2, . . . are obtained sequentially. Each is norm-
ally distributed with mean # and variance o2, Two sequential tests of the null-
hypothesis ¢ = 0o against the alternative ¢ = 404, where 1 is a given constant
less than 1, are proposed, 1 being unknown. The first takes the observations
in pairs and uses *21=X2:~ 3, & decision being reached after each: pair, The
second uses the observations in the form x,—x,, 2x3—(x;+x,),... and

n
generally nx,, , — z x;. Describe how each of these can be constructed to
i=1

give preassigned probabilities of error under the two hypotheses. Is one of v
these procedures better than the other? (Sec also the sequential F-test in
Wetherill, 1966.)

Examples
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87 (x;sm=1,2,...)1s a two-state homogeneous Markov process with states 1 : 9 | N on- Pa ra me'tl‘iC M eth OdS

and — 1. Transition probabilities are either v
@ P, = x,oy = 1) =% and Plx, = 1]x,_, = —1) = } :
or (b)P(x,=1|x,.;, =1)=% and P(x, = Hxpey = —1) = 3.

Let r, be the number of changes of state occurring in the first # observations

of this process. Show that it is possible to choose a and b in suf:h a way thz?t a 1

sequential procedure for deciding between (a) and (b) with cont}nuatlon region °

a—dn <r, < b—in In previous chapters we have been concerned primarily with parametric

has error probabilities approximately « and §, and determine these values problems, that is, with real situations where the appropriate probability

when the distribution of x, is the same under both hypotheses. distribution on the sample space of the mathematical model is known apart

' from the values of a finite number of unknown parameters. We have attempted

to state criteria which characterise a good solution of the problem in hand

and more often than not this attempt has failed in the sense that no solution

exists which satisfies the demands of our criteria. Nevertheless the attempt is

‘not completely in vain, for it establishes a framework within which we can

i discuss properties of general methods introduced as intuitively reasonable,

methods such as maximum-likelihood estimation, the likelihood-ratio test

and the sequential probability ratio test; and within which we can compare

properties of different solutions to the same problem, . .
Non-parametric theory is concerned with problems involving larger i B

families of possible distributions, families which cannot be labelled by a :

finite-dimensional vector-valued parameter. Often there are two possible

approaches to a given problem in inference, the parametric and non-

parametric. The former involves stronger assumptions than the latter about

the family of possible distributions on the sample space, assumptions which

may not be verifiable, and to this extent the non-parametric approach is more

realistic. To illustrate this, suppose that we have data consisting of measure-

ments of some characteristic on a random sample of m control units and on

an independent random sample of n units which have been subjected to a

treatment. Thus we have a random sample, x;, x,,..., x,, say, from one

distribution and an independent random sample yy, y,, ..., ,, say, from

another. Let these distributions have distribution functions F and G respec-

tively. We may be prepared to assume that the only possible effect of the

treatment is to ‘shift the mean’, that is, that

Gz) = F(z—p),

where p is an unknown constant; and then we are interested in estimating y
from the data. One approach to this problem of estimation is to assume
normality of the underlying distributions, The problem then becomes para-
metric in character and we may obtain a ‘best’ estimate of y by the methods
of chapter 2. We may also derive a confidence interval for u; but our confidence
in this interval will depend on our confidence in the assumption of normality

138 Sequential Tests 139 Non-Parametric Methods




9.1

140

which we have made. If there is good reason for this assumption, we will be
quite happy about the confidence interval, However if the assumption has
been made on the grounds of expediency, then we might well require a
‘robustness’ study, that is a study of the effect on the confidence interval of
departures from normality of the underlying distributions, in order to bolster
up our faith in the proposed interval.

The alternative approach is to make far weaker assumptions about the
nature of the underlying distributions. For instance, in the above illustration
we might assume merely that F is continuous, a very weak assumption about
which we could completely confident in a given situation. The problem is
now non-parametric because there is a distribution on the sample space of -
our model corresponding to each distribution on the line with continuous
distribution function, and this family cannot be labelled by a finite-dimensional
vector-valued parameter ~ it is far too large. The labelling parameter  for
this family now takes the form 8 = (F, #) and F ranges over the space of
continuous distribution functions on the line, while u ranges over the real
numbers. Of course, despite the size of the family of possible distributions,
we may still attempt to find a 100(1 — o) per cent confidence interval for U, that
is, an interval S(x, y) (where (x, y) = (x,, x5, ..., Xms Yis Y2r « « > Ya)), defined
for each (x, y) and having the property that

Po{(x, »); e S(x, )} = L —a, forallg.

Naturally, the larger the family of possible distributions, the more severe this
problem becomes. So, not surprisingly, we should be content initially to find
any solution to it without worrying unduly about wether the solution is
optimuim relative to some stated criteria,

This illustrates a general point about non-parametric theory. We did not |
have great success in stating criteria which led to unique optimum solutions
to parametric problems ; we might expect even less success in such an approach
to non-parametric problems. And this is reflected in the historical development
of non-parametric theory. Methods were suggested for particular problems
and only relatively recently have optimum properties of these methods been
investigated. In this chapter we shall discuss a few of these methods, without
saying much about their properties, though some of the notions introduced
in earlier chapters such as the size and power of tests provide a useful structure
for thinking about the methods.

The Kolmogoroy-Smirnov test

The first non-parametric problem which we shall consider is as follows.
Given a random sample x = (x,, x,, . . ., x,) from a continuous distribution
on the line, it is desired to test the simple hypothesis that the distribution

function is the specified one, F. We shall refer to this as the null-hypothesis|
to indicate that our conclusion will be either, ‘There is enough evidence to'
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reject this hypothesis’ or, “There is not enough evidence to reject it.’
The Kolmogorov-Smirnov test is a very natural one and is defined thus:
Let the ordered sample be Xy < Xz < ... < Xy and let F,(z) be the
sample or empirical distribution function defined by

F(z)=0 forz< X(1ys

J .
== forx; < 2z < X4y, UG=12...,n-1),

n
=1 forxy, < z

If the distribution function of the distribution from which our sample was
drawn is really F, then this empirical distribution function F, should be an
approximation to F. Hence it seems sensible to base a critical region of a test
of F on the distance of F, from F. This of course leaves the problem of choosing
a measure of the distance between two functions. The Kolmogorov-Smirnov
test uses the statistic

D,(x) = sup |F,(2)— F(z),
and has critical region of the form
{x:D,(x) > k},

the constant k being chosen to give the desired size of test. Thus for a size-a
test, k is chosen so that

Pr{D,(x) > k|F} = a.

The determination of k to satisfy this condition is a problem in probability
calculus, Apparently we have a new probability problem for every new F
which we wish to test, and a non-trivial problem at that, However it transpires
that it is necessary to solve this problem only for one F, since as we vary F,
the number k such that Pr{D,(x) > k|F} = o remains fixed. The statistic
D,(x) is said to be distribution-free. We shall not go into the details of a proof
of this result. The reader may find it an interesting exercise in probability
calculus, given the hint that the critical result is this: if u is a real random
variable with continuous distribution function F, then F (w} is uniformly
distributed on the interval [0, 1].

The distribution of D,(x) has been calculated and tabulated for small
values of n, so that this test is quite easy to apply.

Note that, in Neyman-Pearson terms, the alternative to the null-hypothesis
here consists of a very large set of possible distributions. At least in theory
we may calculate the power of the test with respect to any specific alternative.
It is also plausible that as # — co the power with respect to any specific alter-
native tends to 1, so that the test is a good ‘all-purpose’ test. However greater
power may be achieved against particular smaller sets of alternatives by
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different tests. We have not used any criteria of optimum behaviour in
deriving this test,

The x? goodness-of-fit test

:

An alternative approach to the problem of the previous section is to reduce |
the problem to a parametric one by throwing away some of the information ;
contained in the observation x. The line is divided into class intervals by §

numbers a, < @, < ... < a,; so that we have s+ lintervals I, = (=0,a,], ]

Il = (ah a2]5 Is—l = (as—'l’ as]’ Is = (a.” OO)

The number #; of sample values falling in the ith class interval is recorded,
i=0,1,2,...,s and the original x;s ignored. In this sense we throw away

information.

Now whatever the true distribution from which the original sample was
drawn, the distribution on the space of (ng, n,, ..., n,) is multinomial. If we
know nothing at all about the original distribution, the family of possible
distributions on (ng, n,, ..

tions which can be labelled by the parameter § = (00,0, ...,8,), where

0<0,<land Y 0; = 1. 1f the original distribution has distribution func-

i=0
tion F, then 6 has the specific value §* say,

where 0% = Fla, )—Fla) (1=1,2,.. L 5—1),
68 = F(a,)
and 0% = 1—F(a,).

The original problem is in this way reduced to the parametric problem of
testing whether the multinomial parameter 6 takes the value % We have
already seen how the x* test may be used in such a problem, if n is large, and
we reject the hypothesis {§*} if

\ (n—no¥)?
ng¥

=0
is greater than or equal to the upper 100a per cent point of a y2-distribution
with s degrees of freedom. Rejection of the hypothesis {6*} implies rejection
of the original hypothesis {F}.

The fact that we have thrown away information in order to reduce the
problem to parametric form is reflected in the fact that the y-test will have
small power against certain of the possible alternatives to {F}. 1t is clear
that what this approach is really doing is to partition the original family of
possible distributions on the sample space into equivalence classes (F~Giff

Fla) = Gla), i=1,2,..., s) and then to provide a test for one of these |

equivalence classes.
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The Wilcoxon test

The problem is one referred to on page 139 namely, given independent random
samples x = (xy, x,, ..., Xm) and y = (y,, ys, . . ., Y} from two continuous
distributions which are assumed to be the same apart from a possible difference
in location, to test whether they do differ in location.

In our general notation, let & denote the class of continuous distribution
functions on the line. Then we may label the family of possible distributions
on the sample space by a parameter ¢ = (F, ),

and @ = {§:Fe &F, ~w0 < # < o},

F is the distribution function of each x;; F*, where F*()) = F()— W), is the
distribution function of each Y. We wish to test the hypothesis w, where
0={0:Fe&F, yu= 0}.

The idea underlying the Wilcoxon test is that if we order the m+n values
observed, there will be no tendency for a preponderance of ys at either end
of the ordering if o is true, but there will be some such tendency if u +# 0,
thatis, if ® —w is true, In fact,letz,,z,,.. ., Zm+ be the ordered set of observed
values so that each z is either an xporay.Letry,ry,...,r, be the ranks of
;8 in the ordered set; thatis ry, ry, ..., r» are those values of r for which z,
is a member of y,, Yas ..., V. Then the Wilcoxon test rejects w if the statistic

R=ri+r+ ... +r,

takes big enough or small enough values, that is, if R lies outside an interval
[k 1» k2]

Again the choice of ky and k, to ensure a size- test poses a problem in
probability calculus, but not a severe one in this instance, F or, when w is true
(whatever the true F), all sets of n ranks (ry, ry, ..., r,) are equally probable

+ -1
There are <m’-1+-n> such sets and so the probability of each is (mn n> ,

. . m+n ,
under the null-hypothesis, Therefore if k of the < ) possible sets of ranks
n
of the y;s are taken as critical region of a test, the test is similar of size
, m+n\~1! . .. .
o =k . For a Wilcoxon test of significance level o, we assign to the
n
critical region first those rankings for which R takes its maximum and mini-

mum values, then those for which it takes its next-to-maximum and next-to-
minimum values and so on until the number of pairs of rankings assigned, k',

. m+n\"1 . . L
say, 1s such that 2k’< > 1s as near « as possible without exceeding it.
n

Various results are available regarding optimal properties of this test. If .

The Wilcoxon Test
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the principle of invariance is invoked it can be shown that the original obser-
vation (x, y)can be reduced to the set (*1» 735 ..., 1) of ranks of the y;s without
losing any information which is relevant to the problem in hand. Of course
there does not exist a U.M.P. test or even a U.M.P. invariant test of ¢, How-

Permutation tests

A commonly occurring problem is this: We are given a set of N observations

(x4, X5, . .., xy). Under some null hypothesis to be tested the conditional"
distribution over the set of N points obtained by permuting the coordinates
X1 X2, .+, Xy assigns equal probability to each of these points, whereas under

some alternative of interest this is not so, We may then construct a test of the

null hypothesis by limiting consideration to the subset of the sample space
consisting of these N! points and choosing a critical region within this set,

hypothesis for which we wish reasonable power,

We may illustrate this technique by considering the problem of the previous
section where we were given m+ n observed values denoted by X1 X2y 00y Xy
Y15 Y20- s Yo Let u = (uy, Uy ooy Upy ) be a vector obtained by permuting
the m+n observed values. Under the null-hypothesis that the xs and ys
constitute a random sample from the same distribution, all permutations y

first marose, then, if the shift is to the right, permutations for which Uy~ i, > 0
are more probable than those for which &,~#,, < 0,
1 m I m+n
where @, = — ; and @, =~ u;

m =1 i=m+1
while if the shift is to the Jeft the reverse is true. If we wish a test to guard against
both alternatives - a shift to the right and a shift to the left - then it is natura]
to assign to the critical region, these permutations y for which |&,—,| is
large, the critical value being chosen to yield a test whose size is as near as
possible to a predetermined significance level, If we wish to guard only against
a shift to the right, that Is, if we want reasonable power for this kind of alterna--
tive only, then we should assign to the critical region those permutations u
for which &, ~ i, is large. For small samples this procedure may be carried out
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by enumerating the permutations and calculating i, ~u, for each, For large
samples it can be shown that under the pull hypothesis, the distribution over
permutations of 7, ~ i, is approximately normal with zero mean and variance

11 2 LI &
S =+~ where §2=._— _ Z (ty~13,)? + Z (w;—1,)? |,
mon m+n i=1 i=m+

provided that the observed values are not dominated by a few of them; this
enables a critical region of given size to be determined without vast enumera-
tion.

The use of a sufficient statistic for test construction

The use of permutations in the way outlined above illustratesa general method
of test construction, and, since it is possibly helpful to view permutation tests
in this general light, we shall now discuss it. The reader should bear in mind,
however, that while we discuss this method in a non-parametric context, it is
useful for certain parametric problems also,

The setting is as usual: a sample space X and a family {P,:0 ¢ ®} of distri-
butions on X. We wish to test a null-hypothesis ¢ against the alternative
O~w :

In section 2.3.2, we defined sufficiency of a statistic ¢ for a family {Py:0e®)}
of distributions, Now suppose that there exists a statistic ¢ which is sufficient
for the family {Ps:0 € w} but not sufficient for the larger family {Ps:6e @),
In other words, the conditional distribution Py, on the sample space is the
same for all @ in e, but not the same for ail 6 in ®. If, in this situation, we
limit consideration initially to observations x for which t(x)isa given constant,
lo say, and think in terms of the family {Py,:0€ ©} of conditional distri-

size for simple than for composite hypotheses.
If R(ty) is a region of that subset of X for which tx) = tq, having the
property that

Poo[R(t))] = o, forfe w,

we say that R(t,) is the critica] region of a size-q conditional test of ¢ against
O—w.

If, for each possible value of t,, we have constructed such a critical region
R(t,) (which in practice may be quite easy) and if R is the union of the Rz}
over all possible t,, then R s the critical region of a similar size-y test of w

The Use of a Sufficient Statistic for Test Construction




against @ — P X1 =Xy=..=x,_, =0 and Xppbd = Xpoppy = ... = x = |

since Py(R) = £, Py (R)} b than to that for which
IE":P"IIER(’)]: ’
X=x="'=xr=1 a‘nd r =,- = .., = '—-"O.
=Eyg@) forallew 1 2 Xpb) = Xops X,
=% ; Hence for a size-x conditional test of it is natural to assign to the critical

As an illustration of this technique for constructing similar tests via con,
ditional tests, let us consider the following problem. Given the results of
independent trials we wish to test the nuli-hypothesis that the probability of
success remains constant over the # trials against the alternative that thi
probability increases at least once during the course of the trials,

Here our sample space X is the set of 2 elements x = (x1, x5, ...
where each x; is either | (for success) or O (for failure). The parameter space @
is a subset of R",

region, those of the <:z> possible xs for which the sum of the ranks of the

components which are 1 is larger than a chosen constant, depending on a. (Of
course, because of the discrete nature of the problem, a randomized test might
o) be necessary to achjeve the exact size a; but this is irrelevant to the main idea.)
‘o For each given r, that is, each possible value of the statistic ¢(x), we may
construct a size-x conditional test in this way and so build up a critical region
in the whole sample space X, According to the above general argument, this

O=1{ll=(0,0,.... 0,):0<0,< 1,0, € h<...<0,, ; is the critical region of a similar size-« test of ¢ against @ — ),
A question of considerable interest is this: Suppose that each size-x con-
ditional test is optimal in some sense - is, for instance, U.M.P. in the class of
w=0e@i =0, = = 0, size-ot conditional tests, Does it follow that the similar size-a test built up from
: these conditional tests has optimal properties? We shall not pursue this
question here. Once again the reader is referred to Lehmann (1959), section
i 4.3, for a discussion of it. Instead we shall focus attention on how permutation

Hx)= 3 x; tests fit into this general framework.

=t Let X = R, 0 that a typical observation is X = (X3, %,,..., Xy). We con-
sider a family of distributions on R¥, each of which possesses a density function
with respect to Lebesgue measure, We may then label this family by their

and the null hypothesis () is given by

As we have seen in chapter 2, the statistic

is sufficient for the family [Py:0 € w} on X, where generally

Hn
Py(x) = H 071 =0y~ density functions, so that if, as usual, we use 0 as a label, § is a density function,
=1 O(xy, x,, ..., Xy),and @ is a family of density functions, Let & be the family
and, when 0 = (3, 7,...,y), 5o that f ¢ w, of probability density functions on the line and let w be the family of distri-
Py(x) = y5(1 —y)=Exi butions on R¥ labelled by parameters 6 of the form
However, it is intuitively clear that the order of occurrence of the successes (a 0(xy, X, . .., Xy) = ﬁ fx),  fes.
opposed to their total number). gives some information about whether th i=1

probability of success increases during the course of the trials, and indeed ¢ i

. If we think of w as a hypoth. is it is that which that x,;, x,, ...,
not sufficierit for the family {P,:0 & ®! (see section 2.3.1), @ YPothesis it is that which says that x,, x, Xy are

continuous independent identically distributed random variables,
Suppose that ® contains w and that we wish to test the null hypothesis w

. . ue of ay. there are [ ints i against © — g,
Corresponding to a given value o t, t(x) = r, say, there are . po Let X < x@ < | ¢ x® denote the ordered values of X4 X 2y
the sample space and, for each 0 € w, the conditional 0-distribution over the _ and consider the statistic ¢ defined by
points assigns equal prf)bapi]ity to each, as @s readily Veriﬁed._Eor any 0 ¢ ¢ x x %) = (30, 5@ )
the conditional 0-distribution does not assign equal probability to each A2 ey Xy SRR s
those (n) points. More probability is assigned for instance to the x for whic the so-called order statistic. Then by the factorization theorem of chapter 2,
r

t is sufficient for the family (P, :0 € w) of distributions on the saiple space R”,
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If we are given a value of ¢, say,

Hx) = (ay, a5, ..., ay)

where a; < a, < ... < gy, then there are N! points in the sample space |
corresponding to this value of ¢, namely those whose coordinates are permu-*
tations of ay, ay, . . ., ay. For each 6 € w, the conditional O-distribution over )

these N'! points assigns equal probability to each. (We may ignore those values:
of t which contain at least two equal components, since for every 8 € @, the
probability of the set of such values of ¢ is zero.)

Using given values of ¢t we may now construct size-g conditional tests of oy

just as in the above illustration, and this is how permutation tests fit into the:
general framework under discussion. 4

Randomization

Permutation tests underline the principle of randomization in experimentation
whereby experimental units are assigned to various treatments by some’
random mechanism, and we illustrate this point by considering two examples. §

Suppose that it is desired to test whether r different fertilizers are equally'ﬂ
effective and rs plots are available for experimentation, To help avoid the
possibility that some treatments are assigned to specially favourable plots,
that is, to plots with natural high fertility, each treatment is applied to s
randomly chosen plots. Let the results be as follows:

Treatment Yield

1 X1 Xy ... Xy
2 X21 X2z o0 Xp
r Xr1 Xe2 e X,s,

and let z = (z;;i=1,2,...,r j= 1,2,...,s) be a permutation of the
observed values (Xysi=1,2,...,r,j=1,2,..., s). Under the null-hypo—
thesis of no differences among treatments each permutation z has probability

1/(rs)!. Whereas under the alternative that the treatments simply shift a basic
distribution, those permutations z for which

Z(zi,-—-z,,)z !
1O ey |

[

is large are more probable. Here sz, = ¥z, and rsz, = 2. Y z;;. Hence we|
i i ;

obtain a test of the null-hypothesis of size : i

k

o= —

(rs)!
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by assigning to the critical region those k permutations z for which f(2) takes
its k largest values; and this test guards particularly against alternatives which
state that treatment effects can be described by ‘shifts’ in a basic distribution,

A parametric approach to this problem might set up the model
Xij = thitey, (= 1,2,.‘..,r, J=12...,9

where the us are unknown constants and the es are independent random
variables each of which is assumed to have an N (0, o?) distribution, with g2
unknown. Then the null hypothesis specifies that Uy = Uy = ... =y, and
the likelihood-ratio test can be applied. The critical region of this test turns
out to be of the form {x=Gxp:f) > ¢}, as the reader may verify, where
[ is the statistic on which we based the permutation test. This is no accident.
Rather it illustrates a method of determining a critical region for a permuta-
tion test in order to guard against certain kinds of alternative, We set up a
parametric model, usually based on the assumption of normality, determine
a critical region for the parametric test which is optimum in some sense and
then use the same statistic to construct the critical region of a permutation test.
The parametric approach gives us a guide concerning the ‘shape’ of the critical
region which we should adopt to achieve power where we want to achieve it.
And it often does more. For it often happens that for large samples (large s in
the above example) the permutation distribution of the statistic used is, subject
to weak assumptions, approximately the same as-its distribution derived under
the assumption of normality. This is true for instance in the above example,
and if s is reasonably large, we need not become involved in large scale
enumeration in order to determine the permutations which comprise the
critical region of a test of given size.

Another way of designing the experiment concerning r fertilizers and rs
plots is to divide the rs plots into s blocks each of r plots, the plots in any one
block being chosen to be as homogeneous as possible. Then treatments are
randomized within each block, that i§ the r plots in each block are assigned
to the r treatments at random. Suppose that the results are now:

Block
1 2 vo. S
Treatment
1 X1 X2 ... Xy
2 X2 X2z .. Xy
r xrl xr2 e 'xrs
Letu = (wy; i=1,2,..., riJ=12,...,5) be a set of numbers obtained

from the above X8 by permuting within columns, so that, for each fixed Js
(Urp sy ..., u,;} is a permutation of (X1pp X002, X,;). There are s(r!) such
us, and because of the method of randomization employed they are equally
likely under the null hypothesis of no differences among treatments. We there-

Randomization
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fore obtain a test of this hypothesis of size
k

s(r)

by assigning k of the us to a critical region. The criterion for choosing the us
to be assigned to the critical region of a test depends on the alternatives to the
null-hypothesis which we wish particularly to guard against. And again a
parametric model may be used as a guide, both to suggest the statistics to be
used and (possibly) to yield a large-sample (large s) approximation to its
permutation distribution. Suppose, for instance, that we wish reasonable
power for alternatives which specify that treatments differ only in shifting the
s basic distributions (one for each block). Then we might consider the para-
metric model

Xy = ,u+ﬁj+'r,‘+£ij,

where u, B, (j = 1,2,...,5) and 7, (i =1,2,...,r) are unknown parameters
and ¢; (i=1,2,...,r;j=1,2,.. +»$) are independent N (0, %) random
variables. Here the fis are ‘block constants’ and the s ‘treatment constants’;
for identification we impose the conditions

YB8;,=0, Yt =0.

We now consider testing the null-hypothesis that the s are all equal against
the alternative that they are not - this corresponds to testing the hypotheses
that the treatments are equally effective against the alternative that they differ
by shifting distributions, Application of the likelihood-ratio test (which can
be shown to have optimum properties for this particular problem) produces
as test statistic

Z (xi.—x. )

X=X =1 ) (x = x. ) =53 (% —x. )7
7 7

f(X)=Z(

LJ
where the dot denotes average over the index which it replaces. Furthermore,

under the null hypotheses r(s— 1) J{x) has an F-distribution with (r—1) and
{(r—1)(s—1) degrees of freedom.

We may use this statistic for a permutation test also, and put into the critical |

region of such a test, those us for which f(u) is large. If s is large we may use
the F-distribution quoted as an approximatien to the permutation distribution
of fand thereby avoid enumeration.

We have considered here only a few examples of the many non-parametric
tests in existence. For others the reader is referred to Walsh (1962).
Moreover we have not discussed any theory of optimal properties of non-
parametric procedures. This has been developing in recent years, and the
reader is referred to Lehmann (1959), Hajek and Sidek (1967), and Noether]
(1967) for discussion of this type of problem and for further references.
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3 11,8

Examples
The following observations are a random sample from some continuous distri-
bution:
302 612 426 424
942 55 218 720
036 682 380 118
390 246 850 472
620 28 374 230

Sketch the empirical distribution function. On the same diagram sketch the
distribution function of a normal distribution with mean 5 and standard
deviation 2. May it be assumed that the sample was drawn from this distri-
bution? (See Lindgren, 1962, for tabulated critical values of the Kolmogorov
test.)

An investigation was carried out on two shggested antidotes to the conse-
quences of drinking, these being (a) 2 Ib of mashed potatoes and (b) a pint of
milk. Ten volunteers were used, five to each antidote, the allocation to antidote
being random. One hour after each had drunk the same quantity of alcohol
and swallowed the appropriate antidote, a blood test was carried out and the
following levels (mg/ml) of alcohol in the blood were recorded :

(@ 76 52 92 8 70
(b 110 96 74 105 125.

By means of a non-parametric test, decide whether there is sufficient evidence
to conclude that one treatment is more effective than the other.

A sample of maggots is placed on an enclosed plate. These wander about for
a time and eventually each becomes static and turns into a chrysalis, When
this stage has been reached, the position of each chrysalis on the plate is noted.
There are three main possibilities : (a) the chrysalides are distributed randomly
on the plate; (b) there is a tendency for them to cluster; (c) they tend to isolate
themselves one from another. How would you assess the evidence provided
by the data collected regarding these three possibilities?

The following table gives efficiency indices for each of two large firms and two
small firms chosen at random from each of three areas.

Area Large  Small

1 22,20 16,9

2 19, 11 12,15
6, 4.

Using non-parametric methods, discuss the evidence provided by these data

_ regarding the question of differences in efficiency between large and small

firms.

Examples




9.5 Letxy, x,,..., X2, be a random sample from a distribution with unkno
mean 4 and consider the following test of the hypothesis H that u = 0. Reje
Hif|r—n| > k, where r is the number of positive observations. g

Assuming that the distribution is symmetric, determine k so that this te
has approximate size «. i
Calculate the power of the test for the alternative that the distribution
Ny, 0?) and compare this power with that of the size- t-test having critica
region

%] > e/ (xi— 52, 3

9.6 The following table gives the results of a paired comparison experime|
between two treatments, (Experimental units in a pair are chosen to be :

10 The Bayesian Approach

In previous chapters we have attempted to develop a theory of inference for
certain kinds of problem in terms of probabilities which admit a ‘frequency’

.interpretation; that is, we have associated probabilities only with events

similar as possible to one another.) arising from experiments which can be repeated. Then a probability can be

interpreted roughly as the relative frequency of occurrence of the event in a

Pair large number of repetitions of the appropriate experiment, We have not used

1 2 3 4 5 6 7 8 9 1 probabilities to describe degrees of belief in possible alternative parameter

Treatment values (or states of nature) and we have never made statements such as ‘the

1 24 18 30 25 16 17 21 18 20 14 probability that this hypothesis is true is so and $0’, because the truth of a
2 22 1S 26 24 32 16 19 17 18 13 hypothesis is not an event arising from a repeatable experiment.

Differences +2 43 44 1 —16 +1 +2 +1 12 +1 Referring to the problem of set estimation in the introductory chapter we

- said that this was the problem of dividing the set of possible parameters into

Carry out (a) a t-test, (b) a sign test, each of size 0:05, on the differences to ¢ two subsets, one of \yhich was ‘plausible’ ex post (thgt is, after an observation

the hypothesis that there is no difference between treatments, These tests resull was made) and one implausible ex post. We also said that we would be con-

in different conclusions, Which one do you believe and why? What may thi cernqd with c‘larlfymg. the sense m.w‘hl'ch these subsets were resgectxvely

example illustrate regarding the powers of the two tests? plausible and implausible, Some statisticians argue that the explanation of a

confidence set provided by the “frequentist’ approach, far from clarifying the
sense in which a subset is plausible, merely involves mental juggling which
obscures the whole issue; that degrees of belief are involved in a much more
detailed way than we have admitted in confidence statements with a frequency
interpretation; and that by accepting this fact we arrive at a much more
realistic analysis of the process of scientific inference. We leave the reader to
consider this argument for himself with the comment that the mere use of the
word plausible in our introduction lends some support to it.

10.1  Prior distributions

i The essential difference between the approach to inference which we have
i adopted until now and the alternative approach, called the Bayesian approach
which does not shrink from using probabilities to specify degrees of belief, is
that in the latter there is one further ingredient in a general mathematical
model. As before, we have a sample space X, a parameter space © and a family
: {Py:0€®} of probability distributions on X - a family of possible states of

nature as it is sometimes described. However now we assume the existence of

a probability distribution IT on a class of measurable sets in ©. This proba-
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bility distribution describes our degrees of belief in possible parameter values
prior to an obscrvation being made, and consequently it is called a prior
distribution. We defer for the moment any discussion of how to arrive at the
appropriate prior distribution for any given problem. Even if a purely prag-
matic attitude is adopted it does seem to be true that for at least some inference
problems, an approach which assumes the existence of a prior distribution is
more realistic than one which does not. Let us assume, then, that we have this
further ingredient in our mathematical model. How does the theory of
inference proceed?

Posterior distributions

The fact that the probability distribution IT has a different interpretation in
practice from other probability distributions which we have introduced does
not make it a different mathematical entity. We can conjoin it with other
distributions exactly as if it had the same interpretation. In particular we may
establish a ‘joint distribution of x and 6", that is, a distribution on X x @, by
thinking of P, as a conditional distribution on X given 0. To emphasize this
it is convenient to change notation once again and write P(-|6) instead of P,
Now suppose that, for each 6, P(-|6) is defined by a density function p(+|9)
with respect to some fixed measure on X and that IT is defined by a density
function 7 with respect to some fixed measure on ®. Then the density function
p(x, 8), with respect to the product of the fixed measures, of the joint distri-
bution of x and 8 is given by

px, 8) = m(6)p(x|0).

(Note that here we are using p as a generic notation for density function and
not for a fixed function.)

Usually we can derive from this joint distribution, a conditional distribution
of 6 given x, defined by the density

p(x|0)

6 ,
ol p(x)

x) = n(0)

where p(x) =f n(8)p(x|0)db,
®

and is the density of the marginal distribution of x. This conditional distri-
bution on © may be interpreted as describing our degrees of belief in different
possible values of 4 after the observation x has been made, and consequently]
it is called the posterior distribution of 6.

Once a prior distribution is given, the whole inference process is very easily

summed up according to this approach: An observed result changes our degreej
of belief in different parameter values by changing a prior distribution into '
posterior distribution. I

i
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}n a sense this says all that need be said about inference, if we accept the
existence of a prior distribution and the above very natural interpretation of
a posterior distribution. It may be that in practice we wish to concentrate
attention on some particular aspect of the posterior distribution, so that it is
ot necessary to communieate it in jts entirety. However it is usually clear

from the context how we use the posterior distribution to provide the summary
required,

Bayesian confidence intervals

To illustrate the point Just made, suppose that we wish to provide a confidence
set for an unknown real parameter g(0). From the posterior distribution of §
we may calculate the posterior distribution of g. Suppose, for the sake of

illustration, that this has density p(g|x) and that the graph of p(-|x} is as shown
in Figure 6.

E
l
!
g

Figure 6 Bayesian confidence interval (g, §) for an unknown real
parameter g : N

‘ The ObViOl.lS way to construct a 100(1 —q) per cent Bayesian confidence
Interval, that is, an interval for & whose posterior probability is 1 —a, is to find
the constant k, such that

ﬁg:p(glx» k,}P(g]x) dg = 1—qg,

Then {g: p(g]x) > k,}isa 100(1 — o) per cent confidence interval in the sense
that our posterior confidence (or degree of belief) that g lies in this interval is
100(1 — &) per cent. Moreover this interval clearly consists of those values ofg
most plausible ex post - any value outside the interval is less plausible than any
value in it. Note that in general we cannot make this latter statement for
frequentist conﬁdence intervals, so that if we must use the term plausibility in

155  Bayesian Confidence Intervals




10.3.2

156

explanations, the Bayesian analysis must be more satisfactory than th
frequentist one.

Example

Suppose that n independent identical trials yield r successes. Our prior degr
of belief in different possible values of 6, the common probability of suc
are described by the uniform distribution on [0, 1], thatisn(@) = 1,0 < 8 < |
What is the posterior distribution of 67

P{r successes|0} = (:) g(t—ay-.

Now the density p(6]r) of the conditional distribution of 6 given r successel
is proportional to n(0)p(r|6) and so

p(@lr) < (1 -8
The proportionality constant, which makes the total posterior probabilit]
unity on [0, 1] is clearly {B(r+1, n~r+1)}~! and so
g B Br(l - Q)n—r
p(6ln = BUr+Ln—rt1)

This posterior density has a maximum at § = r/n. Therefore r/n is the mo%
plausible value of § ex post — that value in which we believe most strgngl}
With a uniform prior distribution, the Bayesian most-probable estimat

coincides with the maximum likelihood estimate, .
Note that the variance of the posterior distribution of @ is

(r+Dmn—r+1)

(n+2)%(n+3)
which is very small if n is large. So if n is large, the posterior distribu.tion
highly concentrated whereas the prior distribution which we adopted is ve
diffuse. This is completely in accord with what one would hope for, Vagy
prior knowledge is transformed into rather precise posterior knowledge by
very informative experiment.

Bayesian inference regarding hypotheses

The Neyman-Pearson theory of hypothesis testing is not r.eally conc'ern
with inference regarding hypotheses. Rather it seeks to provide a §olut{on'
a decision problem, a solution which is optimum relative tg ‘cer‘tam criter
The Bayesian approach, on the other hand, admits genuine inference f]
hypotheses. o
Suppose that we have two hypotheses w and ®-- . The prior dlStrlb}lFl
[T assigns the probability IT(w) to w and 1 —IT(w) to ® — w. These probabilit
express our prior degrees of belief in the respective hypotheses. After
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observation x has been made, the posterior distribution P (-[ Xx) assigns proba-
bility P(w|x) to w and 1-P(w|x) to ®—c, and these eXpress our posterior
degrees of belief in the respective hypotheses. This is all that need be said.

Of course we may use the Bayesian approach to decision problems also;
the Bayesian attitude here is that the posterior distribution P(:|x) specifies
our state of knowledge about 8 after the observation x which is to help in
decision making, and that such a specification is a necessary preliminary to the
solution of any decision problem involving 6. We shall consider the role in
decision problems of the posterior distribution in the next chapter.

Choosing a prior distribution

The reader may find the Bayesian theory of inference intellectually more
satisfying than that provided by the frequentist approach which we have con-
sidered until now. The latter approach leaves the suspicion that its Jjustifi-
cations of intuitively acceptable solutions are very much ad hoc and that it
involves changing ground slightly from one such solution to the next. On the
other hand, once we have accepted that degrees of belief can properly be
-described by probability distributions and we have established a method of
determining the appropriate prior distribution Jor each problem we encounter,
the Bayesian approach provides a general method for solving all problems of
inference. The rub lies in the qualification italicized. As yet we have not
mentioned how to arrive at an appropriate prior distribution and this is the
subject of some controversy.,

It is sometimes argued that by sufficient introspection one can arrive at the
prior odds at which one would just accept a bet on this parameter value rather
than that, and so eventually find the prior distribution appropriate for a
particular problem. This may well be true in theory but of course in practice
it would result in a life of introspection in which there was no time to make any
observation in the real world at all, In fact, in practice, prior knowledge is often
rather vague and there is a whole class of prior distributions, each one of which
is adequate for describing an individual’s degrees of belief, The experimenter
can usually distinguish between a prior which is ‘good enough’ and one which
is ‘not good enough’. Within the ‘good enough’ class we can then choose one
on, for instance, grounds of mathematical tractability.

This pragmatic attitude is supported by the fact that with a reasonably
informative experiment, a prior distribution adequate for describing rather
imprecise knowledge can be changed quite considerably without affecting the
posterior distribution all that much. Consider, for instance, the case of n
independent identical trials discussed in Example 10.3.2. There we adopted a
uniform prior distribution for § and arrived at the posterior distribution with
density ; -
pOl) = U=

B(r+1,n-r+1)

Choosing a Prior Distribution
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If instead we had used the prior distribution with density
n(0) = 66(1-6) (0<6<1),

a prior distribution which still describes somewhat vague knowledge of 6 byl
expresses a belief that § is more likely to be around the middle of the inte
[0, 1] than near its extremities, then the posterior distribution would have h ‘

density

B o+ 1(1 —gy-rtt
B(r+2,n—r+2)

When n and r are reasonably large, there is little difference between thes

posterior distributions. In practice then, with a fairly informative experimen
we need not be over-careful about the choice of prior distribution.

p(@]r)

Improper prior distributions

in the sense that it assigns probability 1 to the whole parameter space. Suppo:

for instance that the parameter space is the whole real line and it suits oul
convenience to think of all parameter values as being ‘equally likely’ a prion
It seems natural to describe this by a ‘distribution® with a constant densit
function

n(f) = k,
However for no value of k does this define a proper probability distributiog

e :
since j n(6) df does not exist. Nevertheless we may use Lebesgue measur

It is not necessary that a prior distribution be a proper probability distributicq

say, for all 6. |

halivs]

and take n(f) = 1, for all 6, to describe our prior degrees of belief, Such a prid
distribution is called improper. Of course improper prior distributions may
and usually do, result in perfectly proper posterior distributions. Note that
the case where @ is a Euclidean space, taking an improper prior with constar
density is equivalent to using the likelihood function — now written p(x[()).’
to describe posterior degrees of belief. For example, suppose that (X4, %5,... )X
is a random sample from an N(, 1) distribution with § unknown, so that |

1 1 2
TE m— - x,-—-e
p(x[6) o P 72 (x—0)"}
_exp{—33 (x—%)}
- (2m)*"
With an improper prior distribution for 6, having constant density, we ha
p(6]x) proportional to p(x|6) and so

exp {—in(@—x)%}.

p(8]x) o« exp {—4n(6—%)2}.
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Obviously, then, the posterior distribution of 8 is N (x, 1/n).

The Bayesian approach may be used to justify most intuitively acceptable
parametric procedures and for an account of this the reader is referred to
Lindley (1965), However, in more complex inference problems there remains
the practical difficulty of choosing a prior distribution to reflect one’s degrees
of belief. This difficulty is highlighted in non-parametric problems, when it is
certainly not easy to identify degrees of belief with prior distributions on the
function spaces which then constitute the parameter space. The essential
simplicity of Bayesian theory is attractive. It is not difficult to apply once a
prior distribution has been assigned. But to assign one in practice may be an
extremely difficult problem.

In the next chapter we shall see how prior distributions arise naturally in a
mathematical context, and this provides considerable support for their use,
irrespective of whether or not they are interpreted as describing degrees of
belief,

Examples

Let x;, x5,..., x, be a random sample from an N (@, o2 distribution, where
o%isknown. Prove that, when the prior distribution of 8 is N(u, v%),its posterior
distribution is N (y,, t2),

nX/o? + pjr?
where = —— g Tl =neiyp2
U Yy nd 1, noTt4 72
Let x, x,,..., x, be a random sample from an N(8,, 6,) distribution, with

both 6, and 6, unknown, and suppose that the prior distribution of § = (64, 6,)
has ‘density’

(@) o 1/8, (-0 < 0, < 0,80, > 0).

(Thus 6, and 8, are independent and each has an improper prior distribution,
6, being uniform on {— 0, o) and 8, having ‘density’ 1/6, on (0, 0).) Show
that the posterior distribution of 8, is such that n*(6, —X)/s has Student’s
t-distribution with n— 1 degrees of freedom,

1 n
where s? = -———Z (= %)%
n~1 froet

Then find a shortest 95 per cent Bayesian confidence interval for 0,.

A physical system has two possible states §, and 6 and its progression from
one state to another is described by a homogeneous Markov chain with tran-
sition matrix

P=[a 1—-0:],
1-8 B

Examples
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where 0 < a, # < 1. If the prior probability is z, that the initial state is Gl,f
determine the posterior probability that the initial state was 0,, given that the }
system occupies state @, after n steps. Explain why this posterior probablhty
approaches n, as n becomes large.

1
From a production run a large number of electric light bulbs is obtained, the;
variability in their lifetimes being described by a distribution with density’
He~%(x > O). A run is regarded as satisfactory if the mean lifetime is greater ]
than t, The parameter 6 varies from batch to batch depending on the quality;]
of the tungsten used for the filaments and this variability in 8 is described by a
distribution with density [T(k)]"'6*"'e™%(@ > 0). From a production run,;i
n bulbs chosen at random have lifetimes x,, x5, . . . , X,. On the basis of this
information, find the probability that the run has been satisfactory. i

An event E has an unknown probability 8, believed to be small, of occurring
at each of a sequence of independent trials. To obtain information about H,_
trials are carried out until E occurs for the first time, which happens at the nth
trial. If a prior distribution with density m(1—6)""'(0 < 6 < 1} is assigned,
to 8, show that the shortest Bayesian confidence interval for 8 having proba-|
bility 1—a is, for large m+ n, given to a good approximation by

€y C2 :|
(m+n)y (m+n)|

where c,e”% = ¢,e7°2 e '—e 2 = 1 —a. (Camb. Dip.)

Given a uniform prior distribution for the probability 8 of success in each of
a sequence of independent trials, show that the probability that » trials yield

1 :
rsuccesses is ——, r = 0,1,...,n.
n+1

“

If it is known that the first n trials have produced r successes, show that the
probability is (r+ 1)/(n+2) that the next trial will result in success. . E

The number of particles emitted in time T from a radioactive source may bé
assumed to have a Poisson distribution with mean AT, where 1 is the emission
rate of the source. Counts x and y are made in time T from two independent
sources whose rates 4, and A, are unknown. Prior to these counts 4; and 4,

are taken to be independently distributed, each with density e~ *(4 >> 0). ComA
pare the prior and posterior probabilities that the ratio 4,/4; is between 1— 5
and 146, when x and y are both large, and & is small.
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An Introduction to Decision
Theory

The hypothesis-testing problem is really a decision problem rather than an
inference problem. As a result of an observation which is informative in some
sense, we have to reach one of two alternative decisions. The Neyman-
Pearson theory provides an analysis of this problem which is to some extent
half hearted. It recognizes that the two possible errors involved in a decision
procedure, that is, in a test, are not equally serious and the criteria that it lays
down for a ‘good’ test are based on this notion. But it does not involve any
detailed analysis of the ‘seriousness’ of different errors. If we do carry out such
an analysis, we are led naturally to the following interpretation of the hypo-
thesis-testing or two-decision problem.

The two-decision problem

After making an observation we have to make one of two decisions:
dy: a hypothesis w regarding an unknown parameter 8 is true;

d, : the hypothesis « is false.

We may analyse the consequence of the decision d; when 8 is the true state of
nature and in this way arrive at a loss function (a gain being a negative loss),
L(d;, 6), which expresses the seriousness of the errors which we may make.
This loss function constitutes a new ingredient in our mathematical framework.

Clearly we shall wish to minimize loss in some way, and our problem becomes
this: to choose a decision procedure, that is, a rule which assigns one of the
two decisions d, and d, to each point of the sample space, and to choose this
so that loss is minimized in a way to be specified. From a mathematical point
of view a decision procedure is simply a function from the sample space into
the ‘decision space’ of two elements d, and d,. Thus our problem becomes that
of choosing a decision function.

One of the virtues of this approach to the hypothesis-testing problem is that
other general problems fit into this same framework. In particular the problem
of point estimation does so. To see this, consider the case where we have a
single unknown real parameter 6. Then we may regard an estimate 8(x) as
a decision, and an estimator 8 as a decision function. Again we may analyse
the consequences of ‘wrong decisions’ and arrive at a loss function L{()(x), 0}

The Two-Decision Problem

F
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which expresses the demerit of the estimate
nature. A typical loss function in this case mig

L{B(x), 6} = {B(x)—6}2,

ht well be

And again our problem is to choose a decision function (an estimator )

which minimizes loss in some way.

Decision functions

To investigate general principles and the way
loss, we may as well look at the general decision

in which we wish to minimize
problem of which the problems

of estimation and hypothesis testing are two examples. The mathematical
ingredients of this general problem are as follows. :
As always we have a sample space X whose elements represent possible
outcomes of an experiment, and a parameter space ® whose elements represent
possible ‘states of nature’. Now, in addition, we have a decision space D, each
of whose elements represents a decision which we may make, and a loss
function L defined on Dx ©, L(d, 0) representing the loss (or gain if L{d 6)
is negative) resulting from the decision d, when 6 is the true state of nature,
A decision function d is a mapping from X into D, and our problem is to choose
a & which is ‘good’ in some sense: that is, which minimizes loss in some way.

The risk function

We are now back to this recurrent question,

‘What do we mean by good?” :

As before we can proceed a certain distance in an automatic way, for, given a
decision function é we may calculate the ‘risk’ R,(6) associated with § when
6 is the true state of nature. This risk is defined, for each 6, by

Rs(6) = Eo{L(5, 0)}.

Note that, for each fixed 6, L(3, 0) is a function on the sample space and we
may calculate its expected value relative to any distribution on X, in parti-

cular, to that determined by 6.

Now: for each § we have a risk Junction Ry defined on the parameter space,
and it may seem natural to define a good decision function as one having
uniformly minimum risk. However this is not a very useful definition for
practical purposes as it is seldom that such a decision function exists, We have

encountered just this difficulty previously in the case of estimation and indeed |

we may refer to that case to indicate the kind of reason why it is unrealistic

in practice to look for a uniformly minimum

risk decision function. Suppose

again that 8 is a real parameter for which we require a point estimate, and that

the loss function is quadratic

L{B(x), 8} = {f(x)—0)2,
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In this case the decision function is an estimator f and the risk of § is simply
its mean-square error. Thus to demand a decision function of uniformly
minimum risk is to demand an estimator with uniformly minimum mean-
square error. We have seen in chapter 2 that only in very exceptional circum-
stances does such an estimator exist, and the reasons given there are just the
kind of reasons why in general no uniformly minimum risk decision function
exists. We are back at the impasse which we have encountered before.

Example

In order to give us some basis for assessing different suggestions for circum-
venting this difficulty we consider now a very simple example where it is
possible to enumerate all possible decision functions and calculate their risks.

An airline hasan option on ten second-hand aircraft, all in similar condition,
Of these an unknown number 8 will give 1000 hours flying time without
major breakdown, and on each of these the airline will make a profit of
£1000p: on each of those which do suffer a major breakdown within 1000
hours the airline will lose £1000g. A decision has to be made on whether or
not to take up the option and to obtain some information about 8, the airline
subjects one of the aircraft to tests from which it emerges satisfactory if it will
yield 1000 hours flying time and unsatisfactory if not. (There is time to test
only one.) The cost of these tests is £1000r. Determine the risk function of the
four possible decision procedures.

For this example the sample space X has two elements xy (= satisfactory)
and x, (= unsatisfactory), Corresponding to each integer 8 from 0 to 10 there
is a distribution on X and Po(x,) = /10, Py(x,) = 1—6/10. The decision
space D has two elements, d, (= purchase the ten aircraft) and d, (= do not
purchase the aircraft). The loss function L is given by the economics of the
situation and

L{d;,0) =r forall g,
Ld,0 = r—8p+(10-0)q.

The four possible decision functions and their risks are as follows:
(@) 6, = do not purchase whatever the result of the test,

Formally 0y(xy) = S1lx,y) = d,,
and clearly R;(0) = r, forall 0.

(b) 8, = purchase whatever the result of the test.
O3(xy) = Oy (x;) = d,
and R;,(6) = r—0p+(10—0)q.

(c) 63 = purchase if the result of the test is satisfactory: do not purchase
otherwise,

O3(xy) = dy, O3(x,) = d,.

The Risk Function
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L{d5(x,), 0} = r—0p+(10—8)q, @=12..., 10) i
L{53(x2) 9} =

r.

. 6 0
Since  Pg(x,) = m and  Py(x,) = 1—»16,

6 4
wehave R, (6) = m {r-9p+(10—0)q}+[1—-16] r.

(d)d4 = do not purchase if the result of the test is satisfactbry; purchase
otherwise, )
Salxy) = dy, Salxy) = d,.

As in (¢) we have

R; (6) = l%r-i» [1 _I%] {r~0p+(10—0)g}.

30
114

25 11.4.1

20

- 15

-20
Figure 7 Graphs of risk functions of the four decision functions of
Example 11.3.2. Those of d, and &, are straight lines; that of é3 the
broken curve; and that of d, the unbroken curve
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For the sake of illustration, let us assume that r = l,p=2andg =3,

Then R, (0) = 1,
Ry(6) = 3158,

1
Rs0) = 14302 67,
1
and R, (0) = 31~—80+§ 62,

The graphs of these functions for § < 0 < 10 are sketched in F igure 7. (Of
course only integral values of @ are relevant.)

Assuggested above, there isnot a decision function having uniformly minimum
risk in this case, -

Minimax decision functions

Wald (1950) has drawn an analogy between the problem of choosing a
decision function and the problem of choice of strategy which faces a player
in a game against an opponent, who is sagacious and is attempting to win,
From this analogy there emerges a criterion for using the risk function to
define a ‘good’ decision procedure. A minimax decision function § is one such
that

max R,(6) < max Ry(6),
8 L]

for every other decision function &' So, for instance, in the above example, §,,
the procedure according to which the airline does not take up the option
whatever the result of the tests, is minimax, since

max R; () = 1 and max Ry >1 fori=23 4
8 8

As is illustrated by this example the minimax criterion corresponds to
extremely cautious behaviour on the part of the statistician and this is not
surprising since the analogy referred to above assigns to Nature the role of the
opposing player and thereby implies that Nature is constantly trying to beat
the statistician, For this kind of reason, the minimax criterion is not much
used in practice,

Another possibility for overcoming the difficulty of the non-existence of
uniformly minimum risk procedures, is to impose some ‘natural’ restriction
on the class of decision functions which we shall consider and to hope that
within this restricted class there will exist one of uniformly minimum risk,

Minimax Decision Functions
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This of course is exactly what we did in estimation theory when we introduced
the condition of unbiasedness, and the problems that beset us there continue
to arise here. Sometimes there is no obvious natural restriction to introduce,
and even if there is, we have no guarantee that there will exist a uniformly
minimum risk procedure in the restricted class. So while this approach may
be used for particular problems, it is not of general applicability.

Admissible decision functions

A third possibility is to use the risk function in a less positive way; rather than
think in terms of using it in some way to determine a best procedure, we think
in terms of using it only to eliminate bad procedures. This leads to the impor-
tant notion of admissibility.

We say that a procedure § strictly dominates a procedure §' if R;(8) < R;(8),
for all 8, and this inequality is strict for some 6. Thus in the above example
d4 strictly dominates d,. We have

Rs,(0) < Ry (0) unless 6 = 5 or 6 in which case R;,(0) = R,,(0).

Any procedure which is strictly dominated by another is said to be in-
admissible; any one which is not strictly dominated by another is admissible.
In the above example, 8, is inadmissible because it is dominated by 8,, while
91,0, and J are admissible,

It may be argued that this is as far as we can reasonably go in the use of the
risk function ; that any admissible procedure can be Justified and it does not
really matter which of these we use. Within the class of admissible procedures

6 is not equal to ten, and it then becomes somewhat absurd to choose a
decision procedure on the grounds that this is best when § = 10.)

Bayes’s solutions

Just as with inference, if we admit a prior distribution on the parameter space
which expresses our degrees of belief in different parameter values before an
observation is made, then difficulties tend to disappear from the decision
problem. For then we may calculate the expected risk R;, relative to this prior
distribution, of any decision function § and it becomes natural to define as
best that function with minimum expected or Bayes’s risk, (This is ‘rational’,
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as well as natural, Its rationality is best explained in terms of utility. For a
discussion of this, see F erguson, 1967, Section 1.4) Such a function is called a
Bayes’s solution to the decision problen.

For instance in the above example on an airline, suppose that our prior
degrees of belief in different values of § are expressed by the statement that aj]
values of @ (the number of good aircraft) between 0 and 10 are equally likely,

ie., that P{6 = r} = lil r=2012,.,. , 10,

Relative to this distribution, E (0) =5and E (0% = 35. From this it follows
that

ﬁa, =1,

R62 = E[R‘,z(@)] = E(31-50) = ¢,
R, = —1s,

R,, = 85,

and 8, emerges at the Bayes’s solution relative to this prior distribution,

Of course relative to another prior distribution for 6, another decision func-
tion might have minimum expected risk. It will be seen from Figure 7, that S,
has smallest risk for values of § between 0 and 6, so that &, certainly has mini-

Computation of Bayes’s solutions

In the above example it is relatively easy to determine the Bayes’s solution
relative to any given prior distribution simply by calculating the expected risk
of each of the four possible decision functions, However in many decision
problems - that of estimation, for instance - the class of decision functions is
not finite and this elementary approach will not be possible.

The basic problem is apparently one requiring calculus of variations, for
we have to choose a function, 6, in order o mnimize a functiona] R of it.

into a posterior distribution, with density function 7(+|x), say, according to
Bayes’s rule. We may then define the expected posterior loss associated with

Bayes’s Solutions
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a fixed decision d by
Evei{L(d, 0)} = f L(d, 6) n(6] x) de.
(2]

We can now choose d to minimize this expected posterior loss, for fixed x,
and this is not a calculus of variations problem; it is a problem of ordinary
calculus - determining an element in a space in order to minimize a real-
valued function defined on the space. The point of this discussion is that

in order to find a Ba yes’s solution to a decision problem we take S(x), for each

fixed x, to be that decision d which minimizes the expected posterior loss cor-
responding to this x.
This follows from

R, =f n(e)def L[5(x), 6] p(x|6) dx 11:1
e X

= [ ptxyax [ L[5(x), 61 2(0]) ), 12
X e

since  m(8) p(x|6) = p(x, ) = p(x) m(0]x).

Because p(x) is non-negative we minimize the double integral, that is, R;, by
minimizing the inner integral for each fixed x. In other words we choose
d(x) for fixed x to be that decision which minimizes the expected posterior
loss, and so we may determine the Bayes’s solution 8, point by point.

It is worth noting that for fixed X, m(0]x) oc 7(6) p(x|0), so that we may
determine the value §(x) of the Bayes’s solution by minimizing

feL[a(x), 81 7(6) p(x|6) db.

Evaluation of the ‘marginal distribution’ of x is not necessary in calculating
d(x).

Example

With quadratic loss and a uniform prior distribution for the probability 8 of
success, determine the Bayes’s solution to the problem of estimating 6 on the
basis of the results of n independent trials in which x siiccesses occur.

Here we have

n{0) = 1
p(x]6) = <:> 65(1 —gy==,
L{5(x), 6} = {6(x)—6}2.

In an estimation problem such as this it is customary to denote a decision

0<0<,
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function by @ rather than by 6. If we do so, then of course,
L{B(x), 6} = {6(x)-6}2

We must choose 8(x) to minimize
h n
f {B(x)— )2 ( )9*(1 —0)"* 4,
g x
Let y = d(x). Then we must choose y to minimize
1
f (y—0)26*(1— == g,
J .

This is simply a calculus problem, Differentiating with respect to y shows that
the minimizing value satisfies

1
[o-001-6y-5a9 = o,
0

1
fex+1(1_9)n—xd9
. ) x41
Le. y = T = Py
faxa —0y-*dp
)

Hence the Bayes’s estimator 0 is defined by

X-+1

9()() = m
Of course 8(x) is just the mean of the posterior distribution of § given x,
Generally, if u is a random variable, we minimize E (u—~y)* by taking y = E(y),
and in particular if @ i a random variable with density function n(6 [ X), we
minimize E(f— y)? by taking y = E (6), the expectation being defined relative
to the density 7 (9 x).

We may now calculate the Bayes’s risk of this estimator using either of the
forms 11.1 or 11.2. In this case it is easier to use 11.1. The inner integral is

x+1 P 1
Eg| ———— = — - - 2
e[ 9] P Eg[x—nf+(1 26)]

1

Hence the Bayes’s risk is

1 ,
mgf@eu-ena-zm 1d6 = TS

Bayes’s Solutions

LAt
e LI

PEESwee>




11.64

Example: the two-state, two-decision problem

Suppose that the parameter space O has only two elements §, and 8, and that
the decision space also has two elements, d; which corresponds to the decision
‘8, is the true parameter’ and d, likewise for 6,. Thus we have the problem of
testing one simple hypothesis against another.

Let L= L(d,0),

so that L; is the loss incurred by making the decision d; when 0, is the true
parameter. Usually then we shall have Ly, < L,,, because the loss involved
in making the correct decision about 6, when it is the true state of nature
will be less than that involved in making the wrong decision about it; and
similarly, L,, < L,,.

Let the prior probabilities of 6, and 6, be 7, and m, respectively, where
T;+7; = 1, and consider an element x in the sample space. If we take
d(x) = d,, the expected posterior loss is proportional to

13} p(Xlﬁl),Lqu p(x|6;) Ly,.

If we take 6(x) = d,, the expected posterior loss is proportional (with the same
proportionality constant) to

1 p(x|01) Loy + 7, p(x]6,) Ly,

Hence a Bayes’s solution is obtained by taking 6(x) = d, or d, according as
m p(x[6;) Ly, + 7, p(x]62) Ly, < or > 7y p(x]|01) Ly +7, p(x]0,) Ly,
that is, according as

73 p(x]02) [Li;—Ly,] < or > 7, p(x|6:) [Lyy — Ly, ];

in other words, assuming L,, > L,,, we take o(x) =d, ord, according as

P(xwz) 751[L21“L11].
p(x],) ma[Lia~Ly,]

Thus we are led to a likelihood-ratio test. The set of acceptance of 8, is

st

nl[LZI"‘LU]
my[Ly, —Ly,]

Note, however, that the value of k is determined by the prior distribution and
the loss structure and not by considerations of size. Another way of putting
thisis to say that the size of the optimal test will vary from problem to problem
according to prior degrees of belief and loss structure. It is not surprising really
that this deeper analysis of the problem of testing one simple hypothesis

where k =
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against another leads to this result.
One further point is worth mentioning in connexion with this example,

p(x]6,) - m[Ly ~Ly,]
P(xfex) 7‘2[142—1422]’

what decision do we take?

The answer is that it doesn’t matter. For any x satisfying this condition we
may take (x) = d, or 6(x) = d, or, for instance, we may toss a coin to decide
whether to take §(x) = dy ord,. Inevery case we finish with a decision function
having minimum Bayes’s risk. From a mathematical point of view all that this
means is that there may not be a unique decision function having minimum
Bayes’s risk.

In the previous paragraphs of this chapter we have discussed the simplest
version of the decision problem facing the statistician. In particular we have
assumed that the informative experiment to be carried out is determined
outwith the decision problem, If the choice of experiment is part of this prob-
lem its order of difficulty increases considerably. Between the simple version
and the version which we have discussed is the case where a sequence of
informative experiments is predetermined, where experimentation is costly
and where part of the decision problem is to determine when to stop experi-
mentation. We shall discuss below a particular problem of this nature, a so-
called Bayes’s sequential decision problem, in order to indicate the kind of
reasoning required, since this type of problem has received considerable
attention in recent years,

We have also avoided certain mathematical questions which arise in
decision theory. Does there always exist a Bayes’s solution as we have defined
it? Are Bayes’s solutions always admissible? Is any admissible solution a
Bayes’s solution relative to some prior distribution? The answers to the latter
questions are really rather important. Indeed there is a very close connexion
between the class of admissible functions and the class of Bayes’s functions, a
connexion close enough to provide justification, on purely mathematical
grounds, for the use of prior distributions in decision problems. For an
excellent account of this-and other aspects of decision theory the reader is
referred to Ferguson ( 1967).

A Bayes’s sequential decision problem

We conclude with an example of a sequential decision problem which is
discussed also by Ferguson (1967), p. 318. The argument which he uses is
closely related to that used in dynamic programming and in optimal control
theory (see, for instance, Aoki, 1967). We shall use a slightly more direct
argument,

The problem is the same as that of Example 11.6.3 except that now we do
not fix in advance the number of trials to be carried out and we introduce a
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cost of experimentation. Specifically, we can observe sequentially the results
of independent trials with a common probability 6 of success; our object is to
estimate §; prior knowledge of ¢ is described by a uniform distribution on
(0, 1); the loss function is quadratic, L(d, 0) = (d- 0)?; there is a constant cost

We may argue as follows.t Suppose that we have observed the results ofn
trials and that r successes have oceurred, If we decide to stop observation and
estimate @ at this stage, the minimum tota] expected posterior cost (expected
posterior loss plus observation cost) is achieved by the Bayes’s estimate
(r+ )(n+2) (see Example 11.6.3), and this minimum expected posterior cost

1S

(r+Dn~r+1)
m‘lﬂ’l() = Q0+nc, say,

the first term being the expected posterior loss of the Bayes’s estimate (in this
case simply the variance of the posterior distribution of g given r), and the
second the observation cost.

If, on the other hand, we decide to observe the results of k more trials, and
then stop and estimate 6, our minimum expected posterior cost would be

r+x+D(n+k—r—x+1) N .
(k2 (nrkr3) T HRC = Q)+t h)c, say,

where x is the (at present unknown) number of Successes occurring in these
additional k trials, While at present we do not know x and therefore do not
know @, (x) we may calculate the expected value of Oy (x) relative to our present
state of knowledge, namely,

Qi = E{Qu(x)|(r successes in n trials)},
Thus, relative to our present state of knowledge, the minimum expected

posterior cost is
Qo+ne  if we observe no more trials,

and  Qu+(n+k)c if we observe an additional k trials,
Now if, for all , Qotnc < Q+(n+k)c,

it pays on average to stop observation and estimate 6. If, on the other hand,
for some k > 0,

Qo+ne > Qu+(n+k)e,

then it pays on average to take further observations, (fQo+nc ~ 0, + (n+k)c,
forallk > 0, then we may as well stop and estimate 6, though we should not
lose, on average, by taking another observation.) Since the above holds for
t There is a flaw in this argument as the percipient reader will discover. AUTHOR.
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n=20,1,2...andr = 0,1,2,..., nwenow have defined a set of rules which
enable us to decide what to do in any circumstances in which we find our-
selves,

In order to apply the rules established we require to calculate J,. This does
Dot present much difficulty.

Wehave p(x|g) = (i) F(1-0f>* (x=0,1,... L k)

_ L eu—oy
7!(0'1‘) = m (0 < 6 < 1).
er(l_e)n-—r

Blr+1,n—r+1) 4.

1.
Hence p(x|r) = (ﬁ)[@"(l—())""
0

_ (k) B(r+1+x,n+k+1—r—-x) k=01 .1

X/ . B(r+1,n—r+1)
Therefore
O = E{Qu(x)|r}

_ z": (r+ 14 X)(n+ k41— r— ) k> Br+ 14 x, nt ket 1—r—x)
= 4 (n+k+2)2(n+k+.3) X B(V+l,n—r+1)

- r+Dn—r+1) Ek: k)B(r’+1+x,n’+k+I-r’-x)
_(n+2)(n+3)(n+k+2)x=o x m

where n' = n+-2 and ¥ = r+1.

The sum in this expression is unity since it can be considered as the sum of
the conditional probabilities of x successes x=0,1,..., k) in k trials given .
¥ successes in a previous set of 1’ trials.

5 Dn—r+1
Consequently (), = r+1D(n-r+1)

(n+2)(n+3)(n+k+2)
= THDB—r+ [ 1
and Qo—-0; = m[m n+k+2:].

Our rule therefore becomes : if, for all positive integers k,

(r-H)(n—r-l-l) 1 1
T T ——— | < ke,
n+2)(n+3) | n+2 ntk1a

it pays to stop observation after n trials and estimate 6 as (r+1/(n+2):
otherwise it pays to take at least one more observation.

A Bayes’s Sequential Decision Problem
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This rule simplifies further to become: if, for all positive integers k,

(r+Dn—r+1) <
(42t ) k42 S ©

it pays to stop observation. Now if this inequality is satisfied for k = 1, then
1t is satisfied for all positive integers k. So, having observed r successes in n
trials, we stop observation

. (r+n—r+1)
iff D(r’ n) = (n+2)2(n"—'+3_““)2 K C.

To exemplify the application of this rule, suppose that ¢ = 0-005,an example
also discussed by Ferguson (1967), p. 318. The first decision to be made is
whether or not to observe any results at all. Since D(0, 0) = 1% > 0005, it
pays to observe the result of at least one trial. Also D(r,1),r = 0,1, and
D(r, 2), r = 0, 1, 2, are each greater than 0-005. So it paysto observe the results
of at least three trials. However D(0, 3) = D(3, 3) = 4/900 < 0-005 while
D(1,3) = D2, 3) > 0-005. So, if having observed the results of three trials
we have obtained either no successes or 3 successes we stop observation and
estimate 6 appropriately; while if we have obtained either 1 or 2 successes we
take another observation. Continuing in this way we find that, when n = 5,
for no value or r, is
(r+Hn—r+1)

“——m(n+2)2(n+3)2 > 0-005.
So we never observe the results of more than five trials,

The reader may verify that the continuation region for this sequential
decision problem is as illustrated in Figure 8.

number of successes, r

5
number of trials, n

Figure 8 Continuation region for the Bayes's sequential procedure
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Examples

Let x4, X, ..., X, be a random sample from an N (y, %) distribution with g
and o* unknown, and suppose that according to- a prior distribution x and
log o are independent and uniformly distributed, Show that, with quadratic
loss, L{f, p) = (fi— w)?, the Bayes’s estimator of u is X. What is the Bayes’s
risk of this estimator?

The random variable x is N(8, 1) and the loss incurred in using an estimate
8(x) for 8 is

a{f(x)-6} if?(x) =0,

b{6-0(x)} ifd(x) < 6,

where a > 0 and b > 0. Show that the risk involved in using the estimator g,
defined by

B(x) = x—k

can be expressed in the form

(a+b) {$k)+kD(k)} —ka,

where ¢ and @ are respectively the density and distribution functions of the

N(0, 1) distribution. Then show that within the class {f, : k real} an estimator
with uniformly minimum risk exists and that the minimum risk is

- a

Loaves of bread must be at least w grams in weight. At a certain bakery the
weight of a loaf from a large ovenload is an N(u, 1/7) random variable. The
parameter u is a controllable setting, but t varies from ovenload to ovenload
according to a y2-distribution with v degrees of freedom. The cost per loaf of
producing an ovenload of mean weight 4 is k+ lu, and the selling price of a
loaf of satisfactory weight is m. There is no return from an underweight loaf.
Show that for ovenloads with setting y, the mean profit per loaf is

m¥ {(u—wh/v} - (k+ )

where ¥ is the distribution function of a t-distribution with v degrees of
freedom. Hence find the best setting .

In measuring the RNA content of a certain type of cell there is difficulty caused
by the fact that two cells may be so close together that they are indistinguish-
able. Two independent measurements x, and x, are made, each of which may
be an observation of the content of one or two (independent) cells. A decision
has to be made as to whether the two measurements correspond to two single
cells, one single and one pair or two pairs.

Suppose that the distribution of the content of individual cells is known to
have density function xe™*(x > 0) when measured in suitable units, and there
is prior probability x that an observation will derive from two cells rather than

Examples
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one. Suppose also that there is zero loss for a correct decision and unit loss for
any wrong decision. Demonstrate by a sketch in the (x 1» X3) plane, the Bayes’s
solution .of this decision problem.

A series of n consecutive observations x,, x,, . . . » X, is made of intensity in a
radio receiver. Ifa signal has been sent then these will be of the form x § = a;+g
where aj,a,,...,q, is a known sequence and the random disturbances
€1, €2 . ., & have a multivariate normal distribution with zero means and
covariance matrix V. If there is no signal then Xp=48(=12...,n)

One wishes to decide whether a signal has in fact been sent. The prior proba-
bility of a signal is p. The losses if one decides mistakenly that a signal has, or
has not, been sent are L 1 and L, respectively.

What is the decision rule which gives minimum expected loss?

Suppose that this optimum decision rule is being used, and pL, = (1-p)L,.
What is then the optimum signal sequence {a;} if considerations of trans-

J
mission power enforce the restriction ¥ @? = 17 (Camb. Dip.
p j

To decide which of two varieties of wheat is to be grown on a large scale in a
certain district, an experiment is performed in which n plots are assigned to
each variety. The yields xpli=1,2;j=12..., n) are independently and
normally distributed with means ; and variance ¢? and 4y and u, are taken
to have independent normal prior distributions with means o, and «, and
variance o3, Assuming that ¢? is known, determine the posterior distribution
of (1, 1t,). Deduce that when the loss functions are Li= —ku,(i = 1,2), the
expected risk is minimized by selecting variety 1 or variety 2 according as

Np=Xp. > ¢ 0 N—x, <
where nx; = 3" x, and ¢ = (@2 —,)0%/(no3). (Camb. Dip.)
7

Observations are to be made sequentially on a process (x,) of independent
Poisson random variables having common mean 8, with the object of estimat-
ing 6. Suppose that prior knowledge of 6 is described by the improper distri-
bution on (0, o) with constant density; that the loss involved in estimating
0 by b is (9~6)?; and that the cost of each observation is ¢. Prove that the
optimum Bayes’s sequential procedure is as follows : stop observation as soon

as ) x;i+1 < en®(n+1) and estimate 0by 3 (x;+1)n
i=1 i=1

Let xy, x5,..., x4 be 2 random sample from an N (0, 8) distribution, If the
prior distribution of 6 is that of a 8o vo/x*(v,) random variable, where 6, and v,
are positive constants, what is its posterior distribution?

Find the best Bayes’s point estimate corresponding to the loss function
(6~ 6). Prove that as vo — O while 6, remains fixed,

b3 x2
Show that the estimator £ 2. x? is inadmissible by comparing it with a suitably
chosen multiple of itself, (Camb. Dip.
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Appendix A Some Matrix Results

It is assumed that the reader is familiar with linear spaces, Euclidean spaces
and the notion of orthogonal subspaces; with linear transformations and
matrix representations of these; with range spaces and null-spaces, rank
and nullity. For these ideas see Hohn (1964). Here we shall gather together
some particular results used in Chapter 3, which are scattered throughout the
literature. In what follows, we shall regard matrices as representations, with
respect to fixed orthonormal bases, of linear transformations Sfrom one Euclidean
space to another. For the sake of brevity, we shall exploit orthogonality argu-
ments.

The range of any matrix A is the orthogonal complement of the null-space of A’

Proof. Let x be a vector in the range of A, so that x is a linear combination of
the columns of A ; and let y be a vector in the null-space of A’, so that Ay = 0,

y is orthogonal to each row of A’, that is, to each column of A. Hence it is
orthogonal to x. Therefore the range of A and the null-space of A’, are
orthogonal. _

Now suppose that A has order nx p, and rank r, The range of A is a
subspace of R" having dimension r. The null-space of A’ has dimension
n—rank A = n—r, since rank A’ = rank A. Therefore the sum of the dimen-
sions of the null-space of A’ and the range of A is n. Hence these subspaces are
orthogonal complements,

rank A’A = rank A'[ = rank A]

Proof. Let A have order n x p and let x be any vector in R". By section A.1, x is
uniquely expressible in the form x = ¥y +X;, where x, is in range A and X,
is in null-space A’, Hence A'x = A'x,.

That is, every vector in the range of A’ is in the range of the restriction of A’
to the range of A, so that range A’ c range A'A. Clearly range A’A range A’
These two ranges therefore coincide, and rank A’A = rank A’.

The equations A’'AB = A’x have a solution Jor every vector x

Proof. This follows immediately from the fact that the ranges of A'A and A’
coincide, so that, for every x, A'x is in the range of A’A.
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Any solution B of the equations A'Af = A'x minimizes (x— AB) (x— AB)
Proof. A'AB = A'x is equivalent to Ax—AB) = 0.
Now (x—AB)(x—AB) = [x~AB+AB-P)Y [x—AB+AB-p)]

= (x—ABY (x=AB)+(B—BYA'A(B—B),
the cross-products vanishing since A'(x—Af) = 0 and (x— ABYA = 0.
Clearly  (B—BYA'A(B—B) = 0.
Therefore  (x—ABY(x—AB) < (x—ABY(x—AB).

A symmetric idempotent matrix B of order n represents an orthogonal projection

inR"

Proof. Because B is idempotent it represents a projection onto its range,
Since B = B it follows from section A.1 that the range and null-space of B

are orthogonal complements. Hence B represents a projection along the

orthogonal complement of its range. That is, it represents an orthogonal

projection.

If A has order nx p and rank p, the matrix A(A'A)~'A’ represents the ortho-
gonal projection of R" onto the range of A

Proof. A(A’A)"'A’ is symmetric and idempotent and therefore, by section
A.5, represents an orthogonal projection. Since A(A’A)"!A’A = A, the ranges
of A(A'A)"'A’ and A coincide.

If A has order nx p and rank p, and x is any vector in R”, then the square of the
distance of x from the range of A is x'[1— A(A’A) 'A"]x
Proof. x = A(A'A)"'A'x+[I-A(A'A) A ] x.

The first vector on the right hand side is, by section A.6, the orthogonal
projection of x on the range of A. Therefore the distance of x from the range
of A is the length of the second vector on the right hand side, and the result
follows because [ - A(A’A)™ A’ is symmetric and idempotent,

If X is a symmetric positive-definite matrix of order p and H is a p x q matrix
of rank q (so that g < p), then the partitioned symmetric matrix

Z H
H O
is non-singular. (Here O is the zero matrix of order q x q)

Progf. We prove this by construction. We must find a symmetric matrix
P Q
Q R

Appendix A Some Matrix Results

such that
l:Z H:, [P Qi=[I O1.
H O]J[Q R 0O 1
This requires TP+ HQ .= 1, A8.1
ZQ+HR = O, . A8.2
HP =0, A8.3
HQ =1 . A84

From equation A.8.1 we have P+Z~'HQ = x-!

and multiplying this by H’ we obtain, using equation A.8.3,
HE'HQ = gz~
Now, since X is positive definite and H has full rank, H'S ~'H is non-singular,

Therefore Q = HZ'H)"'H3Z"!,
and consequently P = I~ !-~I-'HHT 'H)"'HE"L,
Also, from equation A.8.2 Z7'HR = -Q.

and, using equation A.8.4 we obtain H'S~'HR = —1I.
Therefore R = ~HEZIH),

It may now be verified that these values of P, Q and R do in fact provide an
inverse for the given matrix,
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Appendix B The Linear Hypothesis

There is an application of the likelihood-ratio test which merits separate dis-
cussion since it deals with a type of question which arises frequently in practice.
We return to the linear model, discussed in chapter 3,

namely x = Af+e,

where x is an n-vector of observations, A is a known nxs matrix, f is an
unknown s-vector and ¢ is an error vector. In chapter 3 we were interested in
estimating f. Here the emphasis changes and we wish to test linear hypotheses
concerning f, hypothesis of the form, ‘The unknown parameter f satisfies
certain linear restrictions, say HB = 0, where H is a given r x s matrix.’

This type of problem arises obviously in the context of regression. To take
a very simple example, we may have reason to assume that, apart from error,
a variable x is linearly related to a single concomitant variable a and we wish
to know whether or not ‘a really influences x’, Then for observations (x4, ay),
(x2,a3), . .., (x,, a,), where the ;8 are exact measurements and the x;s are
subject to error, we have the model

X = fo+Bia+e (=1, 2,...,n

and we wish to test whether 8, = 0. (In the above general notation

A=t 1 .. 1 ]
[al a ... a,
andH = [0 1].)

Similarly we may be prepared to assume that the regression of x on g is
quadratic and wish to test whether or not the coefficient of a? in the regression
equation is zero ~ in other words whether there is anything to be gained from
using quadratic rather than linear regression in our model. The reader may
easily visualize the great variety of possible questions when a regression model
contains several concomitant variables.

Less obviously, perhaps, the above type of problem occurs when the matrix
A can be regarded as a ‘design’ matrix whose elements are all either 0 or 1.
As a simple illustration, suppose that we have r different treatments which
may be applied to experimental units and we are prepared to assume that the
only possible effects of these treatments are that they shift to varying extents
the mean of an underlying distribution of some numerical characteristic x of
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experimental units. To investigate whether or not the treatments do differ in
this way, each treatment is applied to m randomly chosen units and the result-
ing value of x is observed for each. Let the results be as follows:

Treatment Observation

1 xll’ lea ey xlm
2 X215, X322, wa Xom
r Xp1s Xy2s ey Xpme

A model for these observations which incorporates the previous assumptions
is

X,-j=,u,'+81j (]= 1,2,..,,m;i= 1,2,‘..,1‘),

where the ¢;;s are independent identically distributed random variables. We
are interested in testing the hypothesis that y, = Uy = ... = y,. This model
and hypothesis fit into the above general framework if we write

X’=(Xllxlz...xlm,le.‘.sz,...,xrl...x,.m),
ﬁ/ = (:ula Moy 7lur)s
A=[1,0 .. 07

0 1, ... 0

0 0 ... 1,

where 1,, is the m-vector each of whose elements is unity,

and H=|1 -1 0 0 of order (»~1)xr.
I 0 -1 .. 0

1 0 0 ... —i
Again there is a great wealth of possibilities when treatment combinations,
complicated designs and complex questions are allowed.

Returning now to the general model
x = Af+e,

we wish to test the hypothesis that HB = 0. In order to apply the likelihood-
ratio test, we must make assumptions about the error vector & and the
assumption which we make is that ¢ is N(0, o21,), where ¢? is unknown,
that is, errors are independent normal random variables each with zero mean
and unknown variance o2 Note that this assumption is stronger than that
which we adopted in discussing least-squares estimation of B; there we did not
assume normality of the error vector. Our present assumption implies that
the observation vector x is N(AB, ¢°1,), for some B and some o2,

The sample space here is R”, the labelling parameter 6 of the family of
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possible distributions on the sample space takes the form
6= (:B’ 02)

and the distribution P, on R" is defined by the density function
exp[ _ = ADx-Ag)]
2¢?

The null-hypothesis w is specified by
w = {6:HB = 0}

plx,0) =

o"(2m)t"

Let 6 = (B, 62) be the unrestricted maximum-likelihood estimator of 8 and
6 = (B, 3% be the restricted M.LE, — restricted by the condition HB = 0,
Then, as usual, the critical region of a likelihood-ratio test of ¢ takes the form

{x:A() > k),

' _ p{x0)
where A(X) = p—m

We may now proceed in a purely formal way to calculate (), 6(x) and A(x).
Note that the assumption of normality which we have made ensures that maximum-
likelihood estimates of B are also least-squares estimates. As the reader may
easily verify, the M.L.E, B, which is obtained by solving the likelihood
equations, is that value of 8 which minimizes (x—ABY(x—AB); and 42, again
obtained by solving the likelihood equations is ‘

1
¢ = " (x—AB)y(x—AB).
Similarly, # minimizes (x — ABY(x — Af) subject to. HB = 0

and ¢? = %(x—AB)'(x-—A/?).

o'.2 41
Therefore A(x) = ’:——]

6’2
_ Fx—Aﬂ)’(x—Aﬂ)]*"
(x—ABY (x~AB)
and Ax) > k
(x—ABY(x—AB)
=Ry G=ap) ~ *
orto XTAB G~ AR —(x—AB)(x- AB)
(x—ABy(x~AB)

If we denote by R, the residual sum of squares under the null hypothesis w
namely (x~ABY(x—Af), and by Ro the residual sum of squares under the

s

is equivalent to

> some constant c.
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general model, namely (x— Af) (x— AB), then the shape of the critical region
of a likelihood ratio test of w is determined by
Rl - Ro

R,

> C.

The problem of determining ¢ to achieve a predetermined size for the test
is most easily solved by transforming the original problem to canonical form
by an orthogonal transformation of R”. Basically the problem is this: we
know that the mean of a normal distribution on R” lies in a linear subspace Q
— the subspace consisting of those vectors expressible in the form Af; we are
interested in determining whether this-mean lies in a subspace wy of Q, wy
being defined as the range of the restriction of A to the null space of H or the
set of vectors expressible in the form Ap, where HB = 0.

Suppose that Q has dimension s and wy dimension s—r. Then we may
change to a new orthonormal basis in R” whose first s—r components form a
basis of wy, and whose first s components form a basis of Q. If under this
change of basis, x — y and ¢ — #, then our original model may be written, by
a suitable reparametrization from ftoy,

i=12...,9
(i=3s+1,...,n),

Yi = it

= N
and wy is the subspace for which y,_,,, = Vsmrsz = ... =y = 0,

Since by assumption the &;s are independent N(0, ¢?) and since the trans-
formation introduced is orthogonal, the #;8 also are independent N (0, ¢2),
This is the canonical version of the original problem.

It is almost immediately obvious that

Ry= ) »
i=s+1

and R, = i v&,
{=s~r+1

M - Virs1+ Vi ot .. +y:
0 ys2+1+}’s2+2+ co

When w is true, y;_,, 4, ..., y, are independent N (0, ¢?) random variables
and so (R, — Rg)/R,, is distributed as the ratio of independent 2, and yZ_,,
random variables, whatever the true value of o2, Therefore, under the null
hypothesis

so that

n—s RI"RO
r Ro

is distributed as F,,,_ ), and we may determine, simply by reference to tables
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of the F-distribution, a constant k, such that

> k,:, = o foralllew.
0
In this way a size-a likelihood-ratio test may be constructed and this argument
shows this test to be similar.

In practice, of course, we calculate the statistic {Ry~Ry)/R, by the method
first indicated and not by finding a transformation which reduces the problem
to canonical form. Here the methods introduced in chapter 3 for calculating
least-squares estimates and residual sums of squares may be used to advantage.
The results of these calculations are often laid out in an ‘analysis of variance’
table as follows:

Sumof  Degrees of
squares  freedom Mean square  Ratio
For testing w R,—Ry 7 E(Rx-Ro) Fe n—s(R;—~Ry)
r r R,
Residual R, n-—s 1 R,
n—s
Tolal R 1 n—Ss+r

The phrase ‘for testing w’ is used here to cover different phrases used in
different applications. For instance, in the first regression example in this
appendix, this phrase might be replaced by ‘linear regression of x on a’: in the
design example, by ‘treatments’ or by ‘differences in treatment means’.

In practice we are often interested in a more detailed analysis of the variance
of observed x;s than that provided, as in the above analysis of variance table,
by the test of a single linear hypothesis. For instance, suppose that we have
observations x,, x,, ..., x,, the observation X; corresponding to values
a, bi(i = 1,2,...,n) of two concomitant variables a and b, and suppose that
we may adopt the linear regression model

X = Bo+Bia+Brbi+e (i=1,2,... , 1),

where the &s are independent N (0, 0?) random variables. Then we may be
interested in answering the questions: ‘Does a influence x?* and ‘Does b
influence x?” Apparently this means simply that we wish to test the two hypo-
theses, (a) 8y = Oand (b) 8, = 0. However this is not quite so straightforward
asitmay appear at first sight, since any effects on x of a and b may be impossible
to separate on the basis of the observations made, This can be seen quite easily
in an extreme case. Suppose that a;=b;,1=1,2,...,n Then the above
model may be written in either of the forms

X = Bo+(B,+Bo)a;+e
or x; = Bo+(By+B,)b;+e,.
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B: and B, are not identifiable, though 8, + 8, is. Therefore we cannot hope to
test either of the hypotheses (a) and (b), though we may beable to test the single
hypothesis that 8, + 8, = 0. In a less extreme case, where, for instance, g is
near b, for each i, separate tests of the hypotheses , = 0 and 8, = 0 may be
very poor (have low power) while quite a powerful test of the hypothesis that
Bi+ B, = Ois possible. Thus we may be able to conclude that at least one of
By and f, is non-zero without being able to say which is, or whether both are.

This is a general difficulty which occurs when we wish to use a set of data
to test more than one hypothesis. In particular, for two hypotheses w, and w,
we may be able to conclude that not both are true (to reject w; N w,)without
being able to carry the analysis further and decide whether it is w, Or @, or
both which are false, On occasion this further analysis is possible and for
linear hypotheses there is an orthogonality condition which ensures that it is.
This we shall now discuss.

Consider the model

X = ¢+e

where x is an n-vector of observations, ¢ is a mean vector known to liein a
proper subspace Q of R”, and ¢ is an N (0, 6*1,) error vector. (This is a slightly
more general way of expressing the regression model x = Af+e). Let two
linear hypotheses specify respectively that ¢ belongs to the subspaces w, and
w, of Q. Then:

Definition. The linear hypotheses are orthogonal if the orthogonal complements
in Q of wy and w, are orthogonal, that is, if

wt L ws,

where w;i* denotes the orthogonal complement in Q of w,.

This definition extends in an obvious way to.more than two linear hypo-
theses. »
Considerable insight into the theoretical and practical implications of this
definition is gained by considering the canonical version of the problem of
testing two such hypotheses. We note first that the condition wi L wi is
equivalent to either of the conditions w3 = w, or wi < ;.

Hence dim(w;+w,) > dim(w, +w}) = dim Q,

and since w, and w, are subspaces of €, it follows that dim (wi+w,) = dim Q.
Therefore if the dimensions of w, N w,, ®,, w, and Q are respectively g, r,,
ryands, the condition wi L w3 implies s = r, +r, —q. So subject to this con-
dition there exists an orthonormal basis, e,, e,, . . . , e, of R" such that

(a) ey, €5, ..., e, form a basis of w; N w,,

(bley e repepuny. ., e, form a basis of w,,

(©) e, €. ..,e046,41,...,e form a basis of W3,
and (d)ej, e .0y, .. e, form a basis of Q.
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By changing to this orthonormal basis and reparametrizing as previously we
obtain the following canonical version of the two orthogonal hypotheses
model

3 {y,.+r;,. (i=12...,5
YEW G=sei..m,
where the #;s are independent N (0, o?): the hypotheses that ¢ € w; becomes
the hypothesis that y, ,, = Yr+2 = ... =7¥; = 0; the hypothesis that ¢ € w,
becomes y,41 = 40 = ... = ¥r, = 0; and the hypothesis that ¢ EW; N W,
becomes y, ., = Ygrz = .. =y, =0,

The sum of squares for testing w, is y2 + ,+ ... +y?; that for testing w, is
Vier Vit ... +7. These are independent and their sum is the sum of
squares for testing w, N w,.

When the orthogonality condition is satisfied, it is therefore possible to draw
up the following analysis-of-variance table:

Sumof  Degrees of

squares.  freedoms Mean square Ratio
Fortestingw; (i) R,—R, s—r, m; = 5‘_—_&9 F, = m
S"'rl mo
Fortestingw, (i) R,—Ry, s—r,= r—q my= 52;5_0 F;, = i
s—r, mg
For testing
oA ()+6) = Ryy—Ry s—g myy = 22 Ro g
S—q Mo
, Ro
Residual Ry n—s my = ——
n—s
Total Ry, n—gq

In this table R, R, and R, are the residual sums of squares under the hypo-
theses e w,, fe wy, e w, N w, respectively,

The orthogonality condition, with its consequent partition of the sum of
squares for testing w; N w,, represents, in a sense, the opposite extreme from
that exemplified above by the case of two hypotheses (8, = 0, B, = 0) which
were not ‘separable’ because of non-identifiability of B: and §,. The extent to
which we may reliably carry a two-hypothesis analysis beyond the stage of
deciding whether w; N w, is true, to the stage of deciding about the separate
hypotheses, depends on which of these extremes we are nearest. Consequently
it is often necessary to take thought before experimenting or collecting data in
order to ensure that these data will be reasonably informative regarding the
questions which one wishes to answer. In particular it is often desirable to
design an experiment which ensures that the orthogonality condition is
satisfied for linear hypotheses of interest. The subject of experimental design
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is a very large one on which many books have been written, The interested
reader is referred to Cox (1958), and Cochran and Cox (1950) for an intro-
duction to this subject.

We conclude our rather brief discussion of this important topic by returning
to the regression model with two concomitant variables, namely

X; = ﬁ0+ﬁlai+ﬁ2bi+ei (l = 15 2’ ‘o an))

where we are interested in the hypotheses (a) 8, = 0 (b) 8, = 0. This can be
written in the form

x = Af+e,
whereA'=11 1 ... 1
a; a; ... a,
by b, ... b,

Thus in the notation of the present section, Q is the range of the matrix A. Also
wy, the subspace specified by the hypotheses that ; = 0, is the range of the
matrix A,, where

t=M1 1 ... 17,
by, b, ... b,

and w,, the subspace specified by the hypothesis that 8, = 0 is the range of
A,, where

A,=]1 1 ... 11
a a, ... a,

So w, is spanned by the vectors u, where ' = (1,1 ..., 1) and b, where
b = (by, by,...,b,). Since we are interested in orthogonality, it is more
natural to consider w, as being spanned by uand by b— bu, whered = n~ 1Y b,
since u and b—~bu are orthogonal. Similarly w, is spanned by u and a—ay,
while w; N w, is spanned by u. If we assume identifiability of 8, and B, then
not all the as are equal, not all the bs are equal and A has rank 3, so that Q,
w; and w, have dimensions 3, 2 and 2 respectively. { has dimension 1 and is
spanned by a vector in ) orthogonal to both u and b— bu: this vector is con-
tained in w, if and only if it is of the form A(a—au). Hence the hypotheses
B = Oand 8, = 0 are orthogonal if and only if 5—bu and a—au are ortho-
gonal, that is, if and only if } (a,~a)(b;~b) = 0.

Haying translated the original orthogonality condition into this usable form
we can use this example to demonstrate how orthogonality of hypotheses
fagilitates calculations by obtaining explicit expressions for the sums of squares
in an analysis of variance table. Note first that the model may be written as

X = (ﬂo"'ﬁl‘_H'ﬂzg)’*‘ﬁx(ai_‘_‘a)'*'ﬁz(b«'—g)“"ﬁi
= 8o+ B1(a;—a)+ B, (b;—b)+¢;, say.

187 Appendix B The Linear Hypothesis

B




Now let &5, 8,. B, be unrestricted maximum-likelihood estimates of dos B,
and £, rfispectivgly; and let do, i, be estimates restricted by the condition
B2 = 0; 9 and f, estimates restricted by §; = 0. The orthogonality condi-
t:]onsZ(a,.—Ez) =) (b—b) =Y (a;—a)(b,—b) =0 imply, as is readily verified,
that

&

do = do =8y =%,
. (a;—a)x;
/} 1 B = ‘Z-T"*—“_lz—,
Z, {a;—a)
.. L Z (bi_E)xi
=B =S4 57
Explicit expressions for the sums of squares in an analysis-of-variance table
are easily obtained and we find that

Ry, = Z(xi_x—)zs )
Ry = Z {xi“g—'ﬁl(ai_a)"£2(bi-~)}2
= Z(xi“i)z“ﬁf Z(ai—&)z—ﬁﬁ Z(b.“B),
Ry =3 {xi=%=B,(b;=b)}* = ¥ (x;—%)* = B2 ¥ (b~ BY2,
Ry = Y Axi=%=Bia=a)}2 = ¥ (x;— %)= B2 Y (a,—a)%.

Thus the analysis-of-variance table reduces to the following:

1l

Degrees of
Sum of squares ' Sreedom
For testing f, = 0 By (a;—a) 1
For testing f, = 0 B3y (b;~by? 1
Fortesting , = B, = 0 B33 (a,— a2+ 2y (b;~b)? 2
Residual 20=% =B (q—a)— 3. (b;=b)? n—3
Total > {x—X)? n—1

This table has considerable intuitive meaning and might well have been arrived
at without our detailed analysis involving the use of the likelihood-ratio test,
The point of the detailed analysis is of course that we can use the general
results achieved by it in applications where intuition is an insufficient guide.
There are many such applications of varying degrees of complexity.

Analysis of variance is a very important practical tool which emerges, as
above, from considering the application of the likelihood-ratio method to the
problem of testing linear hypotheses. There are other models and questions
for which this technique is appropriate and a full discussion of these is given
by Scheffé (1960). For these other models there are subtle differences in inter-
pretation and in properties of the tests involved, so that it is dangerous to
apply the technique without being quite specific about the model and ques-
tions involved in any particular application. The present section is intended
to be no more than the briefest of introductions to this important topic,
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